Fluorescent technique brings aging polymers to light

May 06, 2020

Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices. However, like people, polymers age, and when they do, the materials become prone to cracking or breaking. Now, researchers reporting in ACS Central Science have developed a method to visualize variations in polymers that arise with age.

Heat, sunlight, oxygen and humidity can all cause polymers to degrade over time. At early stages, polymer chains break, producing functional groups, such as hydroxyl groups, and generating free radicals that speed up the aging process. Scientists have developed methods to study more advanced signs of polymer aging, but these techniques don't provide a microscopic 3D picture, and most aren't sensitive enough to detect early aging. Rui Tian, Chao Lu and colleagues wanted to find a way to visualize the aging process of polypropylene and polyethylene polymers in 3D. Such a technique could be used to detect aged polymers so they can be repaired or replaced with new parts before they fail.

The researchers based their method on a commercially available fluorescent dye, called DBPA, that can specifically attach to hydroxyl groups in polymers as the chains break. The team heated a thin sheet of polypropylene or polyethylene at 140 F and then soaked the plastic in a DPBA solution to dye the aged sites with hydroxyl groups. When the researchers observed the sheets under a confocal microscope, they found that the aged sites in the polymers -- as revealed by the fluorescently tagged hydroxyl groups -- grew deeper, wider and more frequent with time. The method detected faster polymer aging when the sheets were exposed to higher temperatures. To the researchers' knowledge, the fluorescent technique is the first that can sensitively monitor polymer aging in 3D, which will assist in identifying deteriorating polymers at the earliest stages.
The authors acknowledge funding from the National Natural Science Foundation of China.

The paper's abstract will be available on May 6 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acscentsci.0c00133

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Polymers Articles from Brightsurf:

Seeking the most effective polymers for personal protective equipment
Personal protective equipment, like face masks and gowns, is generally made of polymers.

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.