Birds take flight with help from Sonic hedgehog

May 06, 2020

Flight feathers are amazing evolutionary innovations that allowed birds to conquer the sky. A study led by Matthew Towers (University of Sheffield, UK) and Marian Ros (University of Cantabria, Spain) and published in the journal Development now reveals that flight feather identity is established thanks to Sonic hedgehog - a signalling molecule well-known for giving the digits of the limb their different identities (so that your thumb is different from your pinky, for example). These findings suggest the pre-existing digit identity mechanism was co-opted during the evolution of flight feathers, allowing birds take to the air.

Feathers and the flight they support have long fascainted humans. In the bird embryo, feathers begin as buds--thickenings of the epidermis--that then develop into follicles, from which the keratin-based feathers are produced. Not all feathers are equal, however--compare for instance the downy feathers on the breast of a robin with the flight feathers of its wing. Classical embryological experiments in the 1950s, which involved grafting one part of the embryo on to another, suggested that feather identity (e.g. the choice to become a down versus a flight feather) is established at the earliest stages of development, even before the feather buds form. But in the seventy-odd years since then, we still don't know much about which signals regulate feather identity.

The new study, carried out with Lara Busby as first author, reveals that flight feather identity is specified by Sonic hedgehog (Shh), a famous signalling molecule known to be involved in the development of limb digits, including human fingers. (And yes, Shh is named after the computer game character, but that's another story.) Using chicken embryos, the scientists found that Shh is required in the earliest stages of wing development for the mature birds to develop flight feathers. They also defined a set of genes that are likely to be involved in this process. Importantly, they discovered that Shh works in a defined temporal sequence to specify the different flight feather identities, mirroring how it specifies the different digit identities. This similarity suggests that the digit identity network was co-opted for flight feather development during evolution.

Dr. Towers said: "Flight feathers are one of the most important evolutionary adaptations that allowed birds to take to the air. Our unexpected findings, showing that the digits and flight feathers share remarkably similar developmental programmes, provide important insights into how the bird wing evolved to permit flight."

The researchers hope to extend this work by trying to understand how the early exposure of embryonic chick wing bud cells to Shh is 'memorised' to allow flight feather formation at a much later stage of development.

Dr. Matthew Towers is Reader of Developmental Biology and Wellcome Senior Fellow in Basic Biomedical Science at the University of Sheffield, UK.

If reporting this story, please mention the journal Development as the source and, if reporting online, please carry a link to:

REFERENCE: Busby, L., Aceituno, C., McQueen, C., Rich, C.A., Ros, M.A., Towers, M. (2020) Sonic hedgehog specifies flight feather positional information in avian wings. Development, 147, dev188821. doi: 10.1242/dev.188821

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT

The Company of Biologists

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to