A study by TalTech geneticists revealed new potential causes of female infertility

May 06, 2020

Over the last six years a group of Estonian geneticists led by Associate Professor Agne Velthut-Meikas and a PhD student Ilmatar Rooda from TalTech Department of Chemistry and Biotechnology have studied genes previously associated primarily with female hormone synthesis and ovarian follicle development. The findings suggest that these genes may play a far more complex role in oocyte maturation than previously assumed.

For viable oocyte maturation and generation of new life, bidirectional communication, i.e. signaling must take place between the cells in the ovary. Prior to ovulation, an oocyte resides in a follicle, which is a small fluid-filled sac that ruptures at ovulation, releasing the oocyte into the oviduct. For oocyte maturation and its release from the follicle, the oocyte as well as the follicle cells surrounding it, i.e. granulosa cells, must exchange signals with each other over a certain period of time. These granulosa cells also produce hormones that are essential for successful adherence of the embryo to the wall of the uterus and the survival of early pregnancy.

Associate Professor Velthut-Meikas says, "Among other things, the production and functioning of two proteins in ovarian granulosa cells is required. These important proteins are the follicle stimulating hormone receptor FSHR and aromatase." FSHR receives the signal of a follicle-stimulation hormone from the pituitary gland, leading to the ovarian follicle growth and granulosa cell proliferation. Aromatase is the key enzyme responsible for biosynthesis of the steroid hormone estradiol (female sex hormone) in granulosa cells. Mutations or rearrangements in their genes or deviations in the production of these proteins cause infertility in women, because the ovary is not functioning, the oocytes are not maturing nor released from the ovary.

"Our study showed that these genes produce, in addition to the hitherto known proteins, also small RNA molecules (microRNAs), which, by binding to their target genes, determine whether these target genes play their intended role in a cell. The microRNA targets we studied are responsible for processes crucial for female fertility - maintenance of the oocyte reserve, hormone production and ovulation," Velthut-Meikas says.

Thus, in addition to the abovementioned proteins, previously undescribed short microRNA molecules are synthesized from FSHR and aromatase genes. The targets of the microRNA derived from the FSHR gene play essential roles in the activation of ovarian follicle development and oocyte maturation. The targets of the microRNA derived from the aromatase gene are involved in activating changes in the ovarian tissue required for the ovulation process. Both microRNAs presumably regulate also the synthesis of steroid hormones in the ovary, which affect, in addition to the ovary, also the functioning of other tissues - the endometrium, adipose tissue, mammary glands, etc.

"The findings of the study provide new information on the ovarian function which is important for a more accurate diagnosis of the causes of female infertility and for the development of new treatment options. The new knowledge can be used in infertility clinics to improve ovarian stimulation procedures prior to in vitro fertilization, which would significantly improve the effectiveness of infertility treatment. The global trend to preserve the fertility of cancer patients is also a highly topical issue. This involves a process, where part of the patient's ovarian tissue is frozen before chemotherapy that destroys the follicles, so that after the treatment the woman can still conceive her biological children. The process of resuming oocyte maturation from frozen tissue needs to be investigated further," Agne Velthut-Meikas says.
TalTech geneticists in cooperation with the University of Tartu and the Competence Centre on Health Technologies published the findings of the research in the journal Scientific Reports in the article "Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells" on 10.02.2020 https://www.nature.com/articles/s41598-020-59186-x

Additional information: Associate Professor at TalTech Department of Chemistry and Biotechnology, Division of Gene Technology Agne Velthut-Meikas, Agne.Velthut@taltech.ee

Kersti Vähi, TalTech Research Administration Office

Estonian Research Council

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.