Research found a new way to make functional materials based on polymers of metal clusters

May 06, 2020

Researchers at the universities of Jyvaskyla (Finland) and Xiamen (China) have discovered a novel way to make functional macroscopic crystalline materials out of nanometer-size 34-atom silver-gold intermetallic clusters. The cluster material has a highly anisotropic electrical conductivity, being a semiconductor in one direction and an electrical insulator in other directions. Synthesis of the material and its electrical properties were investigated in Xiamen and the theoretical characterization of the material was carried out in Jyvaskyla. The research was published online in Nature Communications on May 6, 2020.

The metal clusters were synthesized by means of wet chemistry adding gold and silver salts and ethynyladamantane molecules in a mixture of methanol and either chloroform or dichloromethane. All syntheses produced the same 34-atom silver-gold clusters with an identical atomic structure, but surprisingly, the use of dichloromethane/methanol solvent initiated a polymerization reaction after cluster formation in solution and growth of human-hair-thick single crystals consisting of aligned polymeric chains of the clusters.

The crystals behaved as a semiconducting material in the direction of the polymer and as an electrical insulator in the cross directions. This behavior arises from metal-metal atomic bonding in the polymer direction while in the cross directions the metal clusters are isolated from each other by a layer of the ethynyladamantane.

Theoretical modeling of the cluster material by computer-intensive simulations using the density functional theory predicted that the material has an energy gap of 1.3 eV for electronic excitations. This was confirmed by measurements of optical absorption and electrical conductivity in a layout where single crystals we mounted as part of a field-effect transistor, which showed a p-type semiconductor property of the material. Electrical conductivity along the polymer direction was about 1800-fold as compared to the cross directions.

"We were quite surprised by the observation that the polymer formation can be controlled by simple means of changing the solvent molecules. We discovered this probably by good luck, but we hope that this result can be applied in future to design hierarchical nanostructured materials with desired functionality", says Professor Nanfeng Zheng from Xiamen University, who led the experimental work.

"This work shows an interesting example on how macroscopic material properties can be designed in the bottom-up synthesis of nanomaterials. Theoretical modeling of this material was quite challenging due to a large-scale model we had to build to account for the correct periodicity of the polymer crystal. To this end, we benefited very much of having access to some of the largest supercomputers in Europe", says Academy Professor Hannu Hakkinen from the University of Jyvaskyla, who led the theoretical work.
-end-
The computer simulations were done in the Barcelona Supercomputing Center under a PRACE computing grant. The work by Hakkinen's group is supported by the Academy of Finland.

Link to the article in Nature Communications in 6th of May 2020: https://www.nature.com/articles/s41467-020-16062-6

Article: P. Yuan et al.: "Solvent-mediated assembly of atom-precise gold-silver nanoclusters to semiconducting one-dimensional materials", Nature Communications, published online May 6, 2020. DOI: 10.1038/s41467-020-16062-6

For more information:

Hannu Hakkinen, University of Jyvaskyla, Finland, hannu.j.hakkinen@jyu.fi, +358 400 247 973

Yang Cao, Xiamen University, China, yangcao@xmu.edu.cn Nanfeng Zheng, University of Xiamen, nfzheng@xmu.edu.cn

Communications officer Tanja Heikkinen, tanja.s.heikkinen@jyu.fi, tel. 358 50 581 8351

The Faculty of Mathematics and Science: https://www.jyu.fi/science/en
Twitter: jyscience

University of Jyväskylä - Jyväskylän yliopisto

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.