Dartmouth researchers find two circadian clocks in the same plant tissue

May 07, 2003

HANOVER, N.H. - Dartmouth researchers have found evidence of two circadian clocks working within the same tissue of the plant Arabidopsis thaliana, a flowering plant often used in genetic studies. Their results suggest that plants can integrate information from at least two environmental signals, light and temperature, which is important in order to respond to seasonal changes.

The study, published this week, appears in the online edition of the Proceedings of the National Academy of Sciences.

"Having two clocks with different sensitivities to light and to temperature is a better way to ensure that both signals of environmental input are fully understood by the plant," says C. Robertson McClung, professor of biological sciences and an author on the paper. "The plant can then process the data and make decisions about flowering, which is a very critical decision. Arabidopsis flowers in response to the lengthening days of spring, but if it were to flower too soon and there is a nasty frost, the blossoms will die. Early spring is cool, so it makes sense for a plant to clue in to more than one environmental signal."

The researchers, which included McClung, Todd Michael, a former graduate student who is now a postdoctoral fellow at the Salk Institute in San Diego, and Patrice Salomé, a graduate student, followed rhythms in two kinds of genes - one kind that encodes for photosynthesis and another not involved in photosynthesis. The genes in this study are both found in the mesophyll, the spongy inner layer of tissue in leaves.

To measure gene expression, McClung and his students manipulated the clock-controlled genes they were studying and put them in control of luciferase, the enzyme that makes fireflies glow, and then introduced that new gene into Arabidopsis. Each plant in the study had only one altered, light-making gene. When that gene was stimulated, light production was captured by a very sensitive camera. McClung and his team used this method to test how Arabidopsis responded to conflicting signals, such as a cycle of cool days and warm nights.

"We found if we gave them warm nights and cool days, the photosynthetic gene ignored the temperature signal and behaved as if it was only seeing the light signal, which makes sense because photosynthesis absolutely depends on daylight," says McClung. "But the other gene ignored the light signal and responded to the temperature signal. That kind of surprised us."

McClung and his students continued the study by examining how the circadian clocks were reset by different stimuli. For example, people respond to a pulse of light prior to dawn by readjusting their internal clocks a few hours ahead. The same pulse of light administered after dusk delays the clock. The researchers found that the non-photosynthetic gene, which favored temperature signals, showed an exaggerated response to pulses of cold air relative to the photosynthetic gene that responded more to light signals.

"This could only occur if the two genes were responding to two different clocks," says McClung. "Since both the genes are expressed in the mesophyll, it's clear that both clocks are operating in that tissue. This is exciting because this is the first good example of two clocks operating within a single tissue in any multicellular organism. We're not quite at the point where we can find out if there are two clocks operating in a single cell, but that's our goal."
-end-
This research is supported by the National Science Foundation.

Dartmouth College

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.