FSU research: New model could help rebuild eroding lands in coastal Louisiana

May 07, 2018

TALLAHASSEE, Fla. -- As coastal lands in Louisiana erode, researchers, environmentalists and engineers are all searching for ways to preserve the marsh coastline.

Now, a Florida State University researcher has developed a model to help stakeholders figure out what factors they need to consider to rebuild land in this fragile wetland.

The model is outlined in the journal Geophysical Research Letters.

"Coastal Louisiana is losing a lot of its wetlands -- about a football field every hour," said Jaap Nienhuis, assistant professor of Earth, Ocean and Atmospheric Science. "It's really, really fast."

The Mississippi River has been leveed to prevent occasional flooding. But the levees have also prevented sediment from coming through and building land to offset the subsidence and land loss.

Engineers and coastal experts have been looking at ways to make small cuts in the levees to allow for some of that sediment to flow through. The idea of a sediment diversion has been around for a long time, but figuring out how much land will be built or how long it will take has been a challenging issue.

That's where Nienhuis' model comes in to play. He and his fellow researchers created a simulation that took several factors into account to see how long it would take to build land under a variety of scenarios. They looked at water and sediment discharge, root strength and soil consolidation.

The effectiveness of sediment diversions vary depending on wetland characteristics.

When determining the best way to build land in these at-risk areas, researchers or engineers could plug the relevant data into Nienhuis' model to sketch out potential outcomes.

"We wanted to know what kind of wetland or what kind of diversion would be most conducive to land building," he said. "It really is a very delicate balance looking at the sediment concentration, what vegetation is there and how much. It requires a lot of very good data."

In the "sweet spot," Nienhuis said, engineers could potentially build 30 to 40 square kilometers of land within a few decades. However, in areas where there might not be as much vegetation or too much sediment or water is allowed in, the areas could wind up eroding more sediment and causing land loss instead of land gain.

"We can use models like this to tell civil and environmental engineers what is important for land building and what's not," he said.

Nienhuis said his model is relatively specific to the Mississippi Delta, but it could potentially be applicable to other areas as well.
-end-
Other authors of the study are Torbjorn Tornqvist and Christopher Esposito of Tulane University.

Florida State University

Related Sediment Articles from Brightsurf:

The first detection of marine fish DNA in sediment sequences going back 300 years
Far too little is known about the long-term dynamics of the abundance of most macro-organism species.

Microbial diversity below seafloor is as rich as on Earth's surface
For the first time, researchers have mapped the biological diversity of marine sediment, one of Earth's largest global biomes.

Climate change could deliver more sediment and pollution to the San Francisco Bay-Delta
Climate change could deliver more silt, sand and pollution to the San Francisco Bay-Delta, along with a mix of other potential consequences and benefits, according to a new study in the AGU journal Water Resources Research.

Urine sediment test results, diagnoses vary significantly across nephrologists
A new study shows that nephrologists do not always agree on their interpretation of images from urine sediment tests, which are frequently ordered to evaluate a variety of kidney diseases.

Texas cave sediment upends meteorite explanation for global cooling
Texas researchers from the University of Houston, Baylor University and Texas A&M University have discovered evidence for why the earth cooled dramatically 13,000 years ago, dropping temperatures by about 3 degrees Centigrade.

Model links patterns in sediment to rain, uplift and sea level change
In a recent study, researchers from The University of Texas at Austin show that a natural record - sediments packed together at basin margins - offers scientists a powerful tool for understanding the forces that shaped our planet over millions of years, with implications on present day understanding.

Massive seagrass die-off leads to widespread erosion in a California estuary
The large-scale loss of eelgrass in a major California estuary -- Morro Bay -- may be causing widespread erosion.

Revealed from ancient sediment: Mangrove tolerance to rising sea levels
The growth and decline of mangrove forests during the final stages of Holocene deglaciation offers a glimpse into how the ecosystems will respond to the rapidly rising seas projected for the future, according to a new study.

New sediment record reveals instability of North Atlantic deep ocean circulation
In the future's warmer climate, large, abrupt and frequent changes in ocean ventilation may be more likely than currently assumed, according to a new study.

Study examines the impact of oil contaminated water on tubeworms and brittlestars
A new study published by Dauphin Island Sea Lab researchers adds a new layer to understanding how an oil spill could impact marine life.

Read More: Sediment News and Sediment Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.