KAIST identifies the cause of sepsis-induced lung injury

May 07, 2019

A KAIST research team succeeded in visualizing pulmonary microcirculation and circulating cells in vivo with a custom-built 3D intravital lung microscopic imaging system. They found a type of leukocyte called neutrophils aggregate inside the capillaries during sepsis-induced acute lung injury (ALI), leading to disturbances and dead space in blood microcirculation.

According to the researchers, this phenomenon is responsible for tissue hypoxia causing lung damage in the sepsis model, and mitigating neutrophils improves microcirculation as well as hypoxia.

The lungs are responsible for exchanging oxygen with carbon dioxide gases during the breathing process, providing an essential function for sustaining life. This gas exchange occurs in the alveoli, each surrounded by many capillaries containing the circulating red blood cells.

Researchers have been making efforts to observe microcirculation in alveoli, but it has been technically challenging to capture high-resolution images of capillaries and red blood cells inside the lungs that are in constant breathing motion.

Professor Pilhan Kim from the Graduate School of Medical Science and Engineering and his team developed an ultra-fast laser scanning confocal microscope and an imaging chamber that could minimize the movement of a lung while preserving its respiratory state. They used this technology to successfully capture red blood cell circulation inside the capillaries of animal models with sepsis.

During the process, they found that hypoxia was induced by the increase of dead space inside the lungs of a sepsis model, a space where red blood cells do not circulate. This phenomenon is due to the neutrophils aggregating and trapping inside the capillaries and the arterioles. It was also shown that trapped neutrophils damage the lung tissue in the sepsis model by inhibiting microcirculation as well as releasing reactive oxygen species.

Further studies showed that the aggregated neutrophils inside pulmonary vessels exhibit a higher expression of the Mac-1 receptor (CD11b/CD18), which is a receptor involved in intercellular adhesion, compared to the neutrophils that normally circulate. Additionally, they confirmed that Mac-1 inhibitors can improve inhibited microcirculation, ameliorate hypoxia, while reducing pulmonary edema in the sepsis model.

Their high-resolution 3D intravital microscope technology allows the real-time imaging of living cells inside the lungs. This work is expected to be used in research on various lung diseases, including sepsis.

The research team's pulmonary circulation imaging and precise analytical techniques will be used as the base technology for developing new diagnostic technologies, evaluating new therapeutic agents for various diseases related to microcirculation.

Professor Kim said, "In the ALI model, the inhibition of pulmonary microcirculation occurs due to neutrophils. By controlling this effect and improving microcirculation, it is possible to eliminate hypoxia and pulmonary edema - a new, effective strategy for treating patients with sepsis."
-end-
Their 3D intravital microscope technology was commercialized through IVIM Technology, Inc., which is a faculty startup at KAIST. They released an all-in-one intravital microscope model called 'IVM-CM' and 'IVM-C'. This next-generation imaging equipment for basic biomedical research on the complex pathophysiology of various human diseases will play a crucial role in the future global bio-health market.

This research, led by Dr. Inwon Park from the Department of Emergency Medicine at Seoul National University Bundang Hospital and formally the Graduate School of Medical Science and Engineering at KAIST, was published in the European Respiratory Journal (2019, 53:1800736) on March 28, 2019.

The Korea Advanced Institute of Science and Technology (KAIST)

Related Sepsis Articles from Brightsurf:

Hormone involved in obesity is a risk factor for sepsis
A group of scientists from Instituto Gulbenkian de Ciência (IGC), led by Luís Moita, discovered that a hormone that has been pointed out as a treatment for obesity reduces the resistance to infection caused by bacteria and is a risk factor for sepsis.

Antihypotensive agent disrupts the immune system in sepsis
Patients who go into shock caused by sepsis (septic shock) are treated with the antihypotensive agent norepinephrine.

Milestone for the early detection of sepsis
Researchers from Graz, Austria, are developing a ground-breaking method that uses biomarkers to detect sepsis 2 to 3 days before the first clinical symptoms appear.

Breast milk may help prevent sepsis in preemies
Researchers at Washington University School of Medicine in St. Louis and Mayo Clinic in Rochester, Minn., have found -- in newborn mice -- that a component of breast milk may help protect premature babies from developing life-threatening sepsis.

Finding a new way to fight late-stage sepsis
Researchers have developed a way to prop up a struggling immune system to enable its fight against sepsis, a deadly condition resulting from the body's extreme reaction to infection.

Study: Sepsis survivors require follow-up support
Survivors of sepsis -- a life-threatening response to an infection -- have expressed a need for advocacy and follow-up support, according to a study authored by professors at the University of Tennessee, Knoxville, and the University of Tennessee Health Science Center in Memphis, and published in Dimensions of Critical Care Nursing.

After decades of little progress, researchers may be catching up to sepsis
After decades of little or no progress, biomedical researchers are finally making some headway at detecting and treating sepsis, a deadly medical complication that sends a surge of pathogenic infection through the body and remains a major public health problem.

Study changes guidelines for sepsis management
University of Arizona Health Sciences researcher ends debate among physicians regarding sepsis management.

Improving outcomes for sepsis patients
More than 1 million sepsis survivors are discharged annually from acute care hospitals in the United States.

Genes linked to death from sepsis ID'd in mice
Bacteria in the bloodstream can trigger an overwhelming immune response that causes sepsis.

Read More: Sepsis News and Sepsis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.