Nav: Home

Close relatives can coexist: two flower species show us how

May 07, 2019

Scientists have discovered how two closely-related species of Asiatic dayflower can coexist in the wild despite their competitive relationship. Through a combination of field surveys and artificial pollination experiments, the new study shows that while reproductive interference exists between the two species, Commelina communis and Commelina communis forma ciliata, both can counter the negative effects of this interference through self-fertilization.

These findings offer a different perspective on theories surrounding co-existence, and suggest a new significance for plants' ability to self-fertilize. The finding was made by Japan Society for the Promotion of Science Research Fellow Koki Katsuhara and Professor Atushi Ushimaru, both part of the Kobe University Graduate School of Human Development and Environment, and it was published on May 2 in Functional Ecology.

The ability of plant species to coexist has long fascinated scientists. When species with shared pollinators flower at the same time in the same place, it's thought that the reproductive interference caused by pollinators makes it hard for these plant species to coexist. Reproductive interference occurs when pollen from another species is deposited on the pistil (female reproductive part of the flower), and competition between pollen tubes causes a decrease in seed production.

The two species of Asiatic dayflower Commelina communis (Cc) and Commelina communis forma ciliata (Ccfc), commonly found in the fields and roadsides of Japan, produce very similar-looking flowers and attract the same pollinators. First the scientists looked at the two species in the wild. They found that pollinators such as bees and hoverflies visited both species indiscriminately, and both species showed a decrease in seed production as the other species' number of flowers increased. In other words, mutual reproductive interference was occurring. The surveys also suggested that Cc is less affected by this interference than Ccfc. This is consistent with the dominance of Cc in the areas surveyed.

By combining fieldwork surveys with artificial pollination experiments, the team discovered that self-pollination helps to reduce the negative impact of reproductive interference. Even when one species was heavily impacted by the large number of flowers produced by the other species, through self-pollination both species managed to produce enough seeds to survive. Cc was able to produce more seeds than Ccfc through self-pollination, which is probably the cause of the asymmetrical production between the species.

We would expect Cc to wipe out Ccfc through reproductive interference, but in fact both species can be found growing in the wild. Katsuhara and Ushimaru propose that the distribution of these two species plays an important role in their ability to coexist despite the strong competition between them. While most areas are dominated by Cc, in some areas Ccfc outnumbers Cc, giving it the advantage (Figure 2: in locations with over 70% Ccfc, it is able to leave more seeds than Cc). Even when it is almost totally surrounded by Cc, Ccfc can still leave some seeds through self-pollination (Figure 2: approx. 30%).

Scientists believe that self-pollination developed so that plants can still produce seeds even when pollinators are scarce. This study suggests that the self-pollination can also mitigate the negative effects when pollen from other species hinders seed production. Self-pollination could also be used to explain the coexistence of plants who share pollinators. This finding marks a step forward in shedding light on species coexistence, and gives a new perspective to the evolutionary background of self-pollination.
-end-


Kobe University

Related Plant Species Articles:

Study: One-third of plant and animal species could be gone in 50 years
University of Arizona researchers studied recent extinctions from climate change to estimate the loss of plant and animal species by 2070.
Scientists challenge notion of binary sexuality with naming of new plant species
A collaborative team of scientists from the US and Australia has named a new plant species from the remote Outback.
Plant lineage points to different evolutionary playbook for temperate species
An ancient, cosmopolitan lineage of plants is shaking up scientists' understanding of how quickly species evolve in temperate ecosystems and why.
Native plant species may be at greater risk from climate change than non-natives
A study led by researchers at Indiana University's Environmental Resilience Institute has revealed that warming temperatures affect native and non-native flowering plants differently, which could change the look of local landscapes over time.
'Specialized' microbes within plant species promote diversity
A Yale-led research team conducted an experiment that suggests microbes can specialize within plant species, which can promote plant species diversity and increased seed dispersal.
New machine learning method predicts additions to global list of threatened plant species
A new method uses machine learning and open-access data to predict whether species are eligible for at-risk status on the IUCN Red List.
Bioactive novel compounds from endangered tropical plant species
A Japan-based research team led by Kanazawa University has isolated 17 secondary metabolites, including three novel compounds from the valuable endangered tropical plant species Alangium longiflorum.
Global study finds taller plant species taking over as mountains and the Arctic warm
A study by more than 100 global researchers, including Simon Fraser University biologist David Hik, is linking the effects of climate change to new and taller plant species in the Arctic and alpine tundra.
New plant species discovered in museum is probably extinct
A single non-photosynthetic plant specimen preserved in a Japanese natural history museum has been identified as a new species.
Plant virus alters competition between aphid species
In the world of plant-feeding insects, who shows up first to the party determines the overall success of the gathering; yet viruses can disrupt these intricate relationships, according to researchers at Penn State.
More Plant Species News and Plant Species Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.