Researchers discover a trigger for directed cell motion

May 07, 2019

When an individual cell is placed on a level surface, it does not keep still, but starts moving. This phenomenon was observed by the British cell biologist Michael Abercrombie as long ago as 1967. Since then, researchers have been thriving to understand how cells accomplish this feat. This much is known: cells form so-called lamellipodia - cellular protrusions that continuously grow and contract - to propel themselves towards signalling cues such as chemical attractants produced and secreted by other cells. When such external signals are missing - as in the observation by Abercrombie - cells begin actively looking for them. In doing so, they use search patterns that can also be observed in sharks, bees or dogs. They transiently move in one direction, stop, wiggle on the spot for a while, and then continue moving in another direction. But how do cells manage to maintain the direction of their movement over a longer period of time?

Researchers at the Cells-in-Motion Cluster of Excellence at the University of Münster (Germany) have now decoded a building block towards answering this question. They discovered that membrane geometry can trigger subsequent lamellipodial cycles: Mechanical forces cause generation of membrane curvature, where certain proteins that recognise this geometry congregate. These proteins, in turn, allow the cell to form the lamellipodia. "The curvature, generated during retraction, already predetermines the growth of the next lamellipodial cycle. This is how the mechanism constantly reactivates itself," explains biologist Dr Milos Galic, junior research group leader at the Cluster of Excellence, and senior author of the study. When external signals are missing, a cell does not just stop and mark time - it is able to momentarily head in one direction and efficiently patrol its environment. The study has been published in the "Nature Physics" journal.

Methods and further results

The starting point for the study was a surprising observation made while analysing microscopic images. The researchers were investigating how cells formed lamellipodia and, in consequence, how the motion and shape of cells changed. They discovered that the lamellipodia evolved over a wide range of sizes and had very different lifespans. "In the data we couldn't recognise any recurring pattern in the growth and contraction of lamellipodia," says biologist Dr Isabell Begemann, who carried out the study as lead author, as part of her doctoral dissertation. The researchers were able to determine, similar to work from other groups, that sites of subsequent lamellipodia extension occurred wherever the cell membrane developed a strong curvature. They therefore hypothesized that a mechanism linked to these curvatures may determine continuous motion cycles and, in consequence, motion persistence.

Biologists, biochemists and physicists worked closely together to investigate this idea. They first developed biosensors in order to label highly curved sites at the cell membrane, and visualised them by various means of high-resolution microscopy. To this end, they connected fluorescent molecules with so-called I-BAR domains. These are banana-shaped regions of proteins whose positively charged side binds the negatively charged cell membrane - but only when the membrane is curved. Taking advantage of these biosensors, the researchers were able to demonstrate that the curvature-sensitive proteins accumulate at sites where the lamellipodium is contracting. Once enriched, these proteins induce protruding forces in the cell via the protein actin, which triggers outgrowth of the lamellipodium. In a next step, the researchers developed a mathematical model that reconstitutes the mechanism, and simulated it on the computer using various parameter combinations. Comparing the predictions derived from the mathematical model with complementing experimental imaging data further strengthened the results found so far.

The researchers found evidence for the presence of the identified motility mechanism in cell culture models, for example in connective tissue cells derived from mice, in human blood vessel cells from the umbilical cord, and also in human immune cells - i.e. a cell type which indeed moves freely within the organism. Finally, the researchers also wanted to know what effects the proposed mechanism had on the motility pattern of a cell. "We down-regulated the I-BAR proteins, enabling us to 'hack into' the cell's self-organisation system," says Milos Galic. Without the mechanism, the cell does still manage to move, but the search area becomes substantially smaller. Parallel to this mechanism, there are certainly other machineries, which intertwine - but the mechanism has influence on a cell's motility pattern. The results of the study could, in future, help in answering fundamental questions on processes in organisms involving freely moving cells.
-end-


University of Münster

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.