Success tastes so sweet

May 07, 2019

Researchers from the National Institute for Physiological Sciences in Japan identify the neurons responsible for relaying sweet taste signals to the gustatory thalamus and cortex in mice.

Okazaki, Japan - While the peripheral taste system has been extensively investigated, relatively little is known about the contribution of CNS gustatory neurons in the sensation of taste. In this new study, researchers have identified neurons in the brainstem that are responsible for encoding sweet tastes.

In mice, the parabrachial nucleus of the pons in the brainstem is a major hub that receives sensory information about hunger, satiety, and taste information and relays it to the cortex via the gustatory thalamus. One clue to the molecular properties of gustatory neurons in the parabrachial nucleus may lie in the neuronal expression of SatB2; the role of neurons in the parabrachial nucleus that possess this transcription factor has so far remained a mystery. Ken-ichiro Nakajima and his research team at the National Institute for Physiological Sciences have found that SatB2-expressing neurons in the parabrachial nucleus of mice encode sweet tastes, and those that projected to the gustatory thalamus induced appetitive lick behaviors in mice. They recently published their findings in Cell Reports.

"We've known about the presence of taste-responsive neurons in the parabrachial nucleus for over 40 years," Nakajima says. "Only recently have we had the appropriate molecular markers and imaging methods to properly characterize these neurons--we used cell ablation, in vivo calcium imaging, and optogenetics to define the role of SatB2-expressing neurons is in the sensation of taste."

Selective ablation of SatB2-expressing neurons led to the loss of normal sweet taste sensing, which was measured by licking behavior in mice, but had little impact on the sensitivities to umami, bitter, sour, and salty tastes. This indicates that SatB2-expressing neurons have selective roles in sweet taste transduction.

Furthermore, the researchers clarified the functional role of SatB2-expressing neurons. Artificial activation by optogenetics caused dramatic changes in licking behavior; mice intensively licked tasteless water as if it were the sweet-tasting solution. These findings indicated that SatB2-expressing neurons convey sweet taste-specific signals.

"Our findings indicate that different taste qualities are processed by different types of neurons, at least in the brainstem," says lead author Ou Fu. "The next important step will be to identify a whole set of gustatory neurons, including SatB2 neurons, in the mouse parabrachial nucleus. This will allow us to understand how their assemblage forms complex flavors."

This new work could be pivotal in characterizing taste processing at molecular and cellular levels.
-end-


National Institutes of Natural Sciences

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.