Nav: Home

Tibetan plateau first occupied by middle Pleistocene Denisovans

May 07, 2019

The Tibetan Plateau, as Earth's "Third Pole," was reported to be first occupied by modern humans probably armed with blade technology as early as 40 ka BP. However, no earlier hominin groups had been found or reported on the Tibetan Plateau until a recent study was published by Chinese researchers.

A joint research team led by CHEN Fahu from the Institute of Tibetan Plateau Research of the Chinese Academy of Sciences and ZHANG Dongju from the Lanzhou University reported their studies on a human mandible found in Xiahe, on the Northeastern Tibetan Plateau. The findings were published in Nature.

The researchers found that the mandible came from an individual who belonged to a population closely related to the Denisovans first found in Siberia. This population occupied the Tibetan Plateau in the Middle Pleistocene and adapted to this low-oxygen environment long before the arrival of modern Homo sapiens in the region.

So far, Denisovans are only known from a small collection of fossil fragments from Denisova Cave in Siberia. Traces of Denisovan DNA are found in present-day Asian, Australian and Melanesian populations, suggesting that these ancient hominins may have once been widespread.

This study confirms for the first time that Denisovans not only lived in East Asia but also on the high-altitude Tibetan Plateau. It also indicates that the previously found possible introgression of Denisovan DNA (EPAS1) into modern Tibetans and Sherpas, who mainly live on the high-altitude Tibetan Plateau and surrounding regions today, is probably derived or inherited locally on Tibetan Plateau from Xiahe hominin represented by this Xiahe mandible.

The reported Xiahe mandible was found on the Tibetan Plateau in the Baishiya Karst Cave in Xiahe, China. Researchers managed to extract collagen from one of the molars, which they then analysed using ancient protein analysis. Ancient protein data showed that the Xiahe mandible belonged to a hominin population closely related to the Denisovans from Denisova Cave.

The robust primitive shape of the mandible and the very large molars still attached to it suggest that this mandible once belonged to a Middle Pleistocene hominin sharing anatomical features with Neandertals and specimens from the Denisova Cave.

Attached to the mandible was a heavy carbonate crust. By applying U-series dating to the crust, the researchers found that the Xiahe mandible is at least 160,000 years old, representing a minimum age of human presence on the Tibetan Plateau.

The similarities between the Xiahe mandible and other Chinese specimens confirm the presence of Denisovans among the current Asian fossil record. The current study paves the way towards a better understanding of the evolutionary history of Middle Pleistocene hominins in East Asia.
-end-


Chinese Academy of Sciences Headquarters

Related Tibetan Plateau Articles:

New perspective: Vegetation phenology variability based on tibetan plateau tree-ring data
Recently, a research group headed by Prof. YANG Bao from the Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources of the Chinese Academy of Sciences, together with coauthors from Russia, Germany, Canada and Sweden, has reconciled these conflicting results based on a 55-year series of vegetation phenology for the TP derived from well-validated process-based Vaganov-Shashkin model (V-S) simulations of tree-ring growth data.
Tibetan Alpine grasslands threatened by climate warming
The researchers from Northwest Institute of Plateau Biology of the Chinese Academy of Sciences found that the stability of the grasslands was affected not by the richness of plant species, but by the effects on dominant species and the asynchrony of the species.
Rising temperatures threaten stability of Tibetan alpine grasslands
A warming climate could affect the stability of alpine grasslands in Asia's Tibetan Plateau, threatening the ability of farmers and herders to maintain the animals that are key to their existence, and potentially upsetting the ecology of an area in which important regional river systems originate, says a new study by researchers in China and the United States.
Microphysical differences in precipitation between Tibet and southern China
Studies of raindrop size distribution (DSD) over different regions helps to advance our understanding of DSD characteristics and provide observational facts regarding the development and evaluation of microphysical parameterization schemes in numerical models over different regions in the future.
Tibetan people have multiple adaptations for life at high altitudes
The Tibetan people have inherited variants of five different genes that help them live at high altitudes, with one gene originating in the extinct human subspecies, the Denisovans.
Mechanism of the influence of the Tibetan-Iranian Plateaus on the circulation and climate in summer
The Iranian-Tibetan Plateaus have both dynamic and thermal influences on Asian climate and global circulation.
The initial collision between Indian and Asian continental
A recent research reveals that India-Eurasia continental collided first in central Tibet at about 65 Ma (SCES, No.3, 2017).
Bursting the bubble: Solution to the Kirchhoff-Plateau problem
Researchers solve a mathematical problem illustrated by soap films spanning flexible loops.
Why did rainfall over Asian inland plateau region undergo abrupt decrease around 1999?
The Asian inland plateau (AIP) is located in the East Asian monsoon marginal areas and mainly includes Mongolia and part of northern China.
Humans occupied tibetan plateau thousands of years earlier than previously thought
A new analysis of an archeological site in the high mountains of Tibet suggests that permanent residents may have set up camp thousands of years sooner than previously thought.

Related Tibetan Plateau Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...