Ultra-long-working-distance spectroscopy with 3D-printed aspherical microlenses

May 07, 2020

Additive manufacturing is a technique in which the final three-dimensional object is produced by successively adding new layers of building material to those that have already been deposited. Recently, the commercially available 3D printers have been experiencing rapid development and so do the 3D-printers materials, including transparent media of high optical quality. These advancements open up new possibilities in many fields of science and technology including biology, medicine, metamaterials studies, robotics and micro-optics.

Researchers from the Faculty of Physics, University of Warsaw, Poland, have designed tiny lenses (with dimensions as small as a fraction of the human hair diameter) that can easily be manufactured by laser 3D printing technique on top of various materials, including fragile novel 2D graphene-like materials. The presented lenses increase the extraction of light emitted from semiconductor samples and reshape its outgoing part into an ultra-narrow beam. Thanks to this property, there is no longer a need for including a bulky microscope objective in the experimental setup when performing optical measurements of single nanometre-sized light emitters (like quantum dots), which up to now could not be avoided. A typical microscope objective used in such a study has roughly a handbreadth size, weights up to one pound (half a kilogram) and must be placed at a distance of about one-tenth of an inch (few millimetres) from the analysed sample. These impose significant limitations on many types of modern experiments, like measurements in pulsed high magnetic fields, at cryogenic temperatures or in microwave cavities, which on the other hand can easily be lifted by the presented lenses.

High speed of the 3D-printing technique makes it very easy to produce hundreds of microlenses on one sample. Arranging them into regular arrays provides a convenient coordinate system, which accurately specifies the location of a chosen nanoobject and allows for its multiple measurements in different laboratories all over the world. The invaluable opportunity of coming back to the same light emitter allows for much more time-efficient research and hypothesis testing. Specifically, one can entirely focus on designing and performing a new experiment on the nanoobject studied before, instead of carrying out a time-consuming investigation of thousands of other nanoobjects before eventually finding an analogue to the previous one.

The shape of the proposed microlenses can easily be adapted to the so-called 2.5D microfabrication technique. The objects satisfying its prerequisites can be produced over large-scale surfaces by pressing a patterned stamp against the layer of material they are supposed to be made of. The 2.5D fabrication protocol is especially attractive from the viewpoint of potential applications of the microlenses, as can be readily up-scaled which is an important factor in possible future industrial use.

Physics and Astronomy first appeared at the University of Warsaw in 1816, under the then Faculty of Philosophy. In 1825 the Astronomical Observatory was established. Currently, the Faculty of Physics' Institutes include Experimental Physics, Theoretical Physics, Geophysics, Department of Mathematical Methods and an Astronomical Observatory. The research covers almost all areas of modern physics, on scales from the quantum to the cosmological. The Faculty's research and teaching staff includes ca. 200 university teachers, of which 78 are employees with the title of professor. The Faculty of Physics, University of Warsaw, is attended by ca. 1000 students and more than 170 doctoral students.

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Related Quantum Dots Articles from Brightsurf:

Direct visualization of quantum dots reveals shape of quantum wave function
Trapping and controlling electrons in bilayer graphene quantum dots yields a promising platform for quantum information technologies.

Scientists age quantum dots in a test tube
Researchers from MIPT and the RAS Institute of Problems of Chemical Physics have proposed a simple and convenient way to obtain arbitrarily sized quantum dots required for physical experiments via chemical aging.

'Growing' active sites on quantum dots for robust H2 photogeneration
Chinese researchers had achieved site- and spatial- selective integration of earth-abundant metal ions in semiconductor quantum dots (QDs) for efficient and robust photocatalytic H2 evolution from water.

New insights into the energy levels in quantum dots
Researchers from Basel, Bochum and Copenhagen have gained new insights into the energy states of quantum dots.

What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.

Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.

Controlling the charge state of organic molecule quantum dots in a 2D nanoarray
Australian researchers have fabricated a self-assembled, carbon-based nanofilm where the charge state (ie, electronically neutral or positive) can be controlled at the level of individual molecules.

Modified quantum dots capture more energy from light and lose less to heat
Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.

Using quantum dots and a smartphone to find killer bacteria
A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.

Synthesizing single-crystalline hexagonal graphene quantum dots
A KAIST team has designed a novel strategy for synthesizing single-crystalline graphene quantum dots, which emit stable blue light.

Read More: Quantum Dots News and Quantum Dots Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.