An optical brain-to-brain interface supports information exchange for locomotion control

May 07, 2020

Communications between two human or animal individuals conventionally depend on sensory systems for vision, audition, olfaction, or touch. Science fiction has popularized the potentials of directly transmitting information between brains for locomotor control. For example, in the 2009 film Avatar, humans use their minds to remotely control the brains of Na'vi-human hybrids to navigate in the real world. Several recent studies proposed the possibility of retrieving electrophysiological signals from one brain to influence the neuronal activity in another brain through electrical or transcranial magnetic stimulation, suggesting the exciting concept of direct information exchange between brains through the Brain-to-Brain interfaces (BtBIs). However, BtBIs have thus far required the use of demanding techniques for long-term, multi-channel recordings to decode the information from an encoder individual, and has been limited by low rates of information transmission to a target neural circuit. Multi-channel single-unit recordings are technically challenging and often lack cell-type specificity. EEG recording are inaccessible to subcortical areas to precisely decode specific intention. Moreover, EEG recordings of steady-state visually evoked potentials require external visual stimulation to generate the brain activity rather than the internal neural activity. Another challenge lies in the need of feeding the electrophysiological information, once decoded, into correct cell types and neural circuits in the target brain. Due to these technical limitations, the information transfer rates were often in the low range of 0.004-0.033 bits/s. Using a BtBI to control locomotion appears to be particularly difficult, since locomotion involves frequent starts, stops, and continuous changes in velocity at a sub-second scale.

Recently, Dr. Minmin Luo's lab published a research article entitled "An Optical Brain-to-brain Interface Supports Rapid Information Transmission for Precise Locomotion Control" in journal Science China Life Sciences. In this work, the authors established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

In this study, the authors demonstrated an optical BtBIs that used fiber photometry to record the population Ca2+ signals of NI neurons from the Master mouse, and then transformed the signals to blue laser pulses, and finally delivered the laser pulses into the NI of the Avatar mouse (Figure 1A, B). This optical BtBI directed the Avatar mice to closely mimic the locomotion of their Masters with information transfer rate about three two orders of magnitude higher than previous BtBIs (Figure 1C-E).

This study emphasize the importance of choosing appropriate neural circuits and of choosing suitable circuit-probing technologies when building a high-performance BtBI. First, the choice of brain structures is important for implementing task-relevant BtBIs. Here the authors collected neuronal signals that precisely report locomotor state and control locomotor speed from the genetically-identified NMB neurons in the NI of the pons. Second, the choice of fiber photometry of Ca2+ signals offers several advantages: 1) it stably records the population neuronal activity of specific cell-type that performs similar functions; 2) it has high signal-to-noise ratio (SNR); 3) it is easy to implement, since it bypasses the challenging task of multi-channel single-unit recording from behaving animals and obviates the need for the extensive decoding of information from large datasets. Finally, the authors used optogenetic stimulation, which also enjoys the advantage of fine-tuning the activity of a genetically defined set of neurons in a given brain area.

In summary, this study demonstrated an optical brain-to-brain interface that supports rapid information transmission for precise locomotion control, and represented a major step toward realizing the full potential of BtBIs.
-end-
Lihui Lu from Dr. Minmin Luo's lab is the first author of this study. Ruiyu Wang contributed to computer programs for information decoding. Dr. Minmin Luo the co-corresponding authors. The work was completed in Luo's group at the National Institute of Biological Science, Beijing and Chinese Institute for Brain Research, Beijing.

Lu, L., Wang, R., and Luo, M. (2020). An optical brain-to-brain interface supports rapid information transmission for precise locomotion control. Sci China Life Sci 63, https://doi.org/10.1007/s11427-020-1675-x

Science China Press

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.