Highly efficient hydrogen gas production using sunlight, water and hematite

May 07, 2020

A research group led by Associate Professor TACHIKAWA Takashi of Kobe University's Molecular Photoscience Research Center has succeeded in developing a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite photocatalysts (*1).

Hydrogen has received attention as a possible next generation energy solution, and it can be produced from sunlight and water using photocatalysts. In order to make this practicable, it is necessary to develop foundation technologies to optimize the potential of the photocatalysts, in addition to finding new materials for catalysts.

This time, Tachikawa et al. successfully produced a photoanode with an extremely high conductivity. This was achieved solely by annealing hematite (*2) mesocrystals (*3, superstructures consisting of tiny nanoparticles of approx. 5nm) to a transparent electrode substrate. Hematite can absorb a wide range of visible light and is safe, stable, and inexpensive. With this photoanode, the electrons and holes produced by the light source separated quickly and, at the same time, a large number of holes densely accumulated on the surface of the particles. The accumulation of holes improved the efficiency of the water oxidation reaction; the slow oxidation of the water has previously been a bottleneck in water-splitting.

In addition to boosting the high efficiency of what is thought to be the world's highest performing photoanode, this strategy will also be applied to artificial photosynthesis and solar water-splitting technologies via collaborations between the university and industries.

These results will be published in the German online chemistry journal 'Angewandte Chemie International Edition' on April 30. This work was also featured in the inside cover.

Main points:Research Background

With the world facing increasing environmental and energy issues, hydrogen has gained attention as one of the possible next generation energy sources. Ideally, photocatalysts could be used to convert water and sunlight into hydrogen. However, a solar energy conversion rate of over 10% is necessary to enable such a system to be adopted industrially. Utilizing Japan's strengths in new materials discovery, it is vital to establish a common foundation technology that can unlock the potential of photocatalysts in order to achieve this aim.

Previously, Tachikawa et al. developed 'mesocrystal technology', which involves precisely aligning nanoparticles in photocatalysts to control the flow of electrons and their holes. Recently, they applied this technology to hematite (a-Fe2O3), and succeeded in dramatically increasing the conversion rate.

This time, they were able to raise the conversion rate up to 42% of its theoretical limit (16%) by synthesizing tiny nanoparticle subunits in the hematite.

Research methodology

Mesocrystal technology:

The main problem that causes a conversion rate decline in photocatalytic reactions is that the electrons and holes produced by light recombine before they can react with the molecules (in this case, water) on the surface. Tachikawa et al. created hematite mesocrystal superstructures with highly oriented nanoparticles via solvothermal synthesis (*7). They were able to develop conductive mesocrystal photoanodes for water splitting by accumulating and sintering mesocrystals onto the transparent electrode substrate (Figure 1).

Photocatalyst formation and performance:

Mesocrystal photoanodes were produced by coating the transparent electrode substrate with hematite mesocrystals containing titanium and then annealing them at 700ºC. A co-catalyst (*8) was deposited on the surface of the mesocrystals. When the photocatalysts were placed in an alkaline solution and illuminated with artificial sunlight, the water-splitting reaction took place at a photocurrent density of 5.5mAcm-2 under an applied voltage of 1.23V (Figure 1). This is the highest performance achieved in the world for hematite, which is one of the most ideal photocatalyst materials due to both its low cost and light absorption properties. In addition, the hematite mesocrystal photoanodes functioned stably during repeated experiments over the course of 100 hours.

The key to achieving a high conversion rate is the size of the nanoparticles that make up the mesocrystal structure. It is possible to greatly increase the amount of oxygen vacancies that form during the sintering process by making the nanoparticles as small as 5 nm and increasing the connecting interfaces between the nanoparticles. This boosted the electron density, and significantly increased the conductivity of the mesocrystals (Figure 2).

The high electron density is connected to the formation of a large band bending (*9) near the mesocrystal surface. This promotes the initial charge separation as well as making it easier for holes to accumulate on the surface. This result was optimized due to the tiny nanoparticle structure of the mesocrystals, and boosted the water oxidation reaction that had been a bottleneck for efficient water-splitting (Figure 3).

Further Research

This study revealed that mesocrystal technology is able to significantly minimize the recombination issue, which is the main cause of low efficiency in photocatalysts, and exponentially accelerate the water splitting reaction.

It is hoped that this strategy can be applied to other metal oxides as well. Next, the researchers will collaborate with industries to optimize the hematite mesocrystal photoanodes and implement an industrial system for producing hydrogen from solar light. At the same time, the strategy developed by this study will be applied to various reactions, including artificial photosynthesis.
-end-
Acknowledgements

These successful results were achieved thanks to support from the following:

The Japan Science and Technology Agency (JST)'s A-STEP (Adaptable and Seamless Technology transfer Program through target-driven R&D)'s industry-academia collaboration phase: 'Development of highly efficient hematite mesocrystal photoelectrodes toward social implementation of solar-hydrogen production systems' (Company: KANEKA Corporation, Researcher: TACHIKAWA Takashi).

'Creation of efficient light conversion systems based on highly-ordered nanoparticle superstructures.' (Researcher: TACHIKAWA Takashi), as part of JST's Strategic Basic Research Program 'Presto' in the research area 'Hyper-nano-space design toward Innovative Functionality' (Research Supervisor: KURODA Kazuyuki, Professor, Faculty of Science and Engineering, Waseda University).

Glossary

1. Photocatalyst: A material that can be utilized as a catalyst for reactions involving light illumination. The photocatalyst is applied to a substrate which absorbs the light. Used as an electrode, it can also be called a photocatalyst anode or a photoanode. In this study, a photocatalyst was used for the reaction to produce hydrogen by splitting the water molecules.

2. Hematite: A type of iron oxide ore. In addition to being safe, inexpensive and stable (pH > 3), Hematite can absorb a wide range of visible light (approx. under 600nm). The theoretical limit of its solar energy conversation efficiency is 16% (a photocurrent density of 13mAcm-2).

3. Mesocrystal: Porous crystal superstructures consisting of nanoparticles that are highly aligned. Hundreds of nanometers or micrometers small, they feature pores between the nanoparticles that are between 2 to 50 nanometers.

4. Artificial photosynthesis: Method to artificially recreate photosynthesis, which is how plants convert sunlight, water and carbon dioxide into carbohydrates and oxygen. Artificial photosynthesis can also be used to produce other useful compounds.

5. Oxygen vacancy: Inside the mesocrystal structure, there are spaces where there is no oxygen, these are called oxygen vacancies (Vo). In hematite, the creation of these oxygen vacancies enhances electrical conductivity because Fe3+ is deoxygenated, becoming Fe2+ (the oxygen molecules move to fill the vacancies).

6. Light energy conversion efficiency: The amount of light particles used in the reaction (output) divided by the amount of inputted light particles. This is expressed as a percentage.

7. Solvothermal method: A method of synthesizing solids using solvents at high temperatures and high pressures.

8. Co-catalyst: A substance used alongside the photocatalyst to boost the catalytic reaction. In this study, Cobalt phosphate ion (Co-Pi) was used as a co-catalyst to boost oxygen production.

9. Band: The conductive band and valence band are bands that the electrons and their holes can occupy. In semiconductors, there is a small bandgap between valence band and conduction band, allowing a reasonable number of valence electrons to move into the conduction band when a certain amount of energy is applied. When the electron density in the conduction band increases, they move towards the surface, forming an upwards curve.

10. Photoconductive AFM (Atomic Force Microscope): enables the nanoscale analysis of the electric characteristics of a material. In the current study, this was used to measure the current of individual mesocrystal particles by illuminating them with 405nm wavelength LED light.

Kobe University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.