Laser loop couples quantum systems over a distance

May 07, 2020

Quantum technology is currently one of the most active fields of research worldwide. It takes advantage of the special properties of quantum mechanical states of atoms, light, or nanostructures to develop, for example, novel sensors for medicine and navigation, networks for information processing and powerful simulators for materials sciences. Generating these quantum states normally requires a strong interaction between the systems involved, such as between several atoms or nanostructures.

Until now, however, sufficiently strong interactions were limited to short distances. Typically, two systems had to be placed close to each other on the same chip at low temperatures or in the same vacuum chamber, where they interact via electrostatic or magnetostatic forces. Coupling them across larger distances, however, is required for many applications such as quantum networks or certain types of sensors.

A team of physicists, led by Professor Philipp Treutlein from the Department of Physics at the University of Basel and the Swiss Nanoscience Institute (SNI), has now succeeded for the first time in creating strong coupling between two systems over a greater distance across a room temperature environment. In their experiment, the researchers used laser light to couple the vibrations of a 100 nanometer thin membrane to the motion of the spin of atoms over a distance of one meter. As a result, each vibration of the membrane sets the spin of the atoms in motion and vice versa.

A loop of light acts as a mechanical spring

The experiment is based on a concept that the researchers developed together with the theoretical physicist Professor Klemens Hammerer from the University of Hanover. It involves sending a beam of laser light back and forth between the systems. "The light then behaves like a mechanical spring stretched between the atoms and the membrane, and transmits forces between the two," explains Dr. Thomas Karg, who carried out the experiments as part of his doctoral thesis at the University of Basel. In this laser loop, the properties of the light can be controlled such that no information about the motion of the two systems is lost to the environment, thus ensuring that the quantum mechanical interaction is not disturbed.

The researchers have now succeeded in implementing this concept experimentally for the first time and used it in a series of experiments. "The coupling of quantum systems with light is very flexible and versatile," explains Treutlein. "We can control the laser beam between the systems, which allows us to generate different types of interactions that are useful for quantum sensors, for example."

A new tool for quantum technologies

In addition to coupling atoms with nanomechanical membranes, the new method might also be used in several other systems; for example, when coupling superconducting quantum bits or solid-state spin systems used in quantum computing research. The new technique for light-mediated coupling could be used to interconnect such systems, creating quantum networks for information processing and simulations. Treutlein is convinced: "This is a new, highly useful tool for our quantum technology toolbox."
The experiments conducted by the researchers in Basel were funded by the European Research Council as part of the project MODULAR, and by the SNI PhD School.

University of Basel

Related Laser Light Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

UCF researchers generate attosecond light from industrial laser
University of Central Florida researchers are making the cutting-edge field of attosecond science more accessible to researchers from all disciplines.

Quantum rings in the hold of laser light
Ultracold atoms trapped in appropriately prepared optical traps can arrange themselves in surprisingly complex, hitherto unobserved structures, according to scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow.

Making matter out of light: High-power laser simulations point the way
Engineers at UC San Diego developed a set of simulations involving high-power lasers that could help us recreate the transformation of light into matter, and better understand what happened at the very beginning of the universe.

New metasurface laser produces world's first super-chiral light
Researchers have demonstrated the world's first metasurface laser that produces ''super-chiral light'': light with ultra-high angular momentum.

Researchers combine X-rays and laser light to image sprays
Researchers have developed a new laser-based method that provides an unprecedented view of sprays such as the ones used for liquid fuel combustion in vehicle, ship and plane engines.

Laser diode emits deep UV light
Nagoya University researchers say they have designed a laser diode that emits the shortest-wavelength ultraviolet light to-date, with potential applications in disinfection, dermatology, and DNA analyses.

Weaving quantum processors out of laser light
Researchers open a new avenue to quantum computing with a breakthrough experiment: a large-scale quantum processor made entirely of light.

Shedding light on the reaction mechanism of PUVA light therapy for skin diseases
Together with their Munich-based colleagues, a team of physical chemists from Heinrich Heine University Düsseldorf (HHU) has clarified which chemical reactions take place during PUVA therapy.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

Read More: Laser Light News and Laser Light Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to