Magnet Lab researchers make observing cell functions easier

May 08, 2008

TALLAHASSEE, Fla. -- Now that the genome (DNA) of humans and many other organisms have been sequenced, biologists are turning their attention to discovering how the many thousands of structural and control genes -- the "worker bees" of living cells that can turn genes on and off -- function.

To do that, they need to develop new techniques and tools. Scientists in the Optical Microscopy group at the National High Magnetic Field Laboratory at Florida State University, working in collaboration with researchers from the University of Alberta in Canada and the University of California, San Diego, have done just that, and in the process have produced back-to-back articles in the prestigious journal Nature Methods.

In the first paper, magnet-lab biologists Michael Davidson and Kristen Hazelwood worked with researchers from the University of Alberta to create two new fluorescent-protein biosensors, molecular "beacons" that can tell if there is activity within a cell. The biosensors can be used simultaneously to monitor two separate dynamic functions in a single cell -- a key to understanding how different proteins and enzymes (the biomolecules that cause chemical reactions) work together to complete the daily chores that help cells grow and divide. Knowing how cells work together can help researchers learn a great deal more about tumors and developmental biology, among many other things.

The researchers improved a powerful technique used to monitor cellular dynamics called fluorescence resonance energy transfer, or FRET. The technique is used to examine a new class of biosensor molecules that tether two fluorescent proteins together through an intervening peptide (which is like a polymer). Several hundred of these new biosensors have been developed over the past few years and are being used by scientists around the world to study a variety of functions, including programmed cell death, carbohydrate metabolism, cell division, hormone stimulation, acidity changes -- just about any cellular process that can occur.

"In FRET, two molecules that are fluorescent act as 'molecular beacons' under the microscope, transferring energy between each other if they interact in the living cell," said Davidson, who directs the magnet lab's Optical Microscopy program. "With FRET, we can see that happen, but until now, we have only been able to monitor one biosensor at a time."

p>The new technique, called Dual FRET, is outlined in the paper "Fluorescent Protein FRET Pairs for Ratiometric Imaging of Dual Biosensors."

Further expanding the capabilities of optical microscopy, Davidson and his team worked with collaborators from the University of California, San Diego to create a new screening method for fluorescent proteins that makes them more stable under the microscope. These proteins are sensitive to light, which can bleach them out after a certain period of time. By making the proteins more stable, microscopists can observe live cell dynamics for longer periods of time. The paper describing their work, "Improving the Photostability of Bright Monomeric Orange and Red Fluorescent Proteins," was published in the May 4 online edition of Nature Methods.

Taken together, the new technique and tool are expected to speed up experiments and expand the utility of optical microscopy by allowing two dynamic processes inside a cell to be observed at once -- and for longer periods of time.
The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory, which is operated by a consortium composed of Florida State University, the University of Florida and Los Alamos National Laboratory, is sponsored by the National Science Foundation and the state of Florida. To learn more, visit

Florida State University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to