Nav: Home

Brain injury causes impulse control problems in rats

May 08, 2017

New research from the University of British Columbia confirms for the first time that even mild brain injury can result in impulse control problems in rats.

The study, published in the Journal of Neurotrauma, also found that the impulsivity problems may be linked to levels of an inflammatory molecule in the brain, and suggest that targeting the molecule could be helpful for treatment.

"Few studies have looked at whether traumatic brain injuries cause impulse control problems," said the study's lead author, Cole Vonder Haar, a former postdoctoral research fellow in the UBC department of psychology who is now an assistant professor at West Virginia University. "This is partly because people who experience a brain injury are sometimes risk-takers, making it difficult to know if impulsivity preceded the brain injury or was caused by it. But our study confirms for the first time that even a mild brain injury can cause impulse control problems."

For the study, researchers gave rats with brain injuries a reward test to measure impulsivity.

Rats that were unable to wait for the delivery of a large reward, and instead preferred an immediate, but small reward, were considered more impulsive.

The researchers found that impulsivity in the rats increased regardless of the severity of the brain injury. The impulsivity also persisted eight weeks after injury in animals with a mild injury, even after memory and motor function returned.

"These findings have implications for how brain injury patients are treated and their progress is measured," said Vonder Haar. "If physicians are only looking at memory or motor function, they wouldn't notice that the patient is still being affected by the injury in terms of impulsivity."

After analyzing samples of frontal cortex brain tissue, the researchers also found a substantial increase in levels of an inflammatory molecule, known as interleukin-12, that correlated with levels of impulsivity. Interleukins are groups of proteins and molecules responsible for regulating the body's immune system.

The study builds on the researchers' previous findings about the link between interleukin-12 and impulsivity.

Catharine Winstanley, the study's senior author and associate professor in the UBC department of psychology, said the findings are important because impulsivity is linked to addiction vulnerability.

"Addiction can be a big problem for patients with traumatic brain injuries," she said. "If we can target levels of interleukin-12, however, that could potentially provide a new treatment target to address impulsivity in these patients."
-end-
The research was funded by the Djavad Mowafaghian Centre for Brain Health, the Canadian Institute for Health Research, the Weston Brain Institute, the National Institute of Neurological Disorders and Stroke and the Michael Smith Foundation for Health Research.

University of British Columbia

Related Brain Injury Articles:

Brain injury causes impulse control problems in rats
New research from the University of British Columbia confirms for the first time that even mild brain injury can result in impulse control problems in rats.
Which kids will take longer to recover from brain injury?
A new biomarker may help predict which children will take longer to recover from a traumatic brain injury (TBI), according to a preliminary study published in the March 15, 2017, online issue of Neurology, the medical journal of the American Academy of Neurology.
Researchers identify how inflammation spreads through the brain after injury
Researchers have identified a new mechanism by which inflammation can spread throughout the brain after injury.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
Therapy for abnormal heartbeats may cause brain injury
A common treatment for irregular heartbeats known as catheter ablation may result in the formation of brain lesions when it is performed on the left side of the heart, according to new research at UC San Francisco.
How brain tissue recovers after injury
A Kobe University research team has pinpointed the mechanism underlying astrocyte-mediated restoration of brain tissue after an injury.
Depression in soldiers linked to brain disruption from injury
Using multiple brain imaging techniques, researchers have found that a disruption of the circuitry in the brain's cognitive-emotional pathways may provide a physical foundation for depression symptoms in some service members who have suffered mild traumatic brain injury in combat.
Research finds brain changes, needs to be retrained after ACL injury
A new study shows that when you injure your knee, it changes your brain -- which could put you at risk for further injuries.
The effectiveness of treatment for individuals with brain injury or stroke
In the current issue of NeuroRehabilitation leading researchers explore the effectiveness of several neurorehabilitation treatments for individuals with brain injury or stroke.
Allen Institute releases powerful new data on the aging brain and traumatic brain injury
The Allen Institute for Brain Science has announced major updates to its online resources available at brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury in collaboration with UW Medicine researchers at the University of Washington, and Group Health.

Related Brain Injury Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".