Nav: Home

Maternal and paternal cooperation

May 08, 2017

The Arabidopsis thaliana is a tiny, inconspicuous and herbaceous offshoot of the family of cruciferous plant that one might easily overlook in a meadow, yet the plant has the potential to disrupt a common school of thought: Together with his working group and colleagues from the University of Nagoya, Japan, the Freiburg biologist Prof. Dr. Thomas Laux show how plants start embryo development and thereby follow a fundamentally different reproduction strategy than animals. The team used the Arabidopsis thaliana as a model organism and showed how plants begin with gene transcription, that is genome reading, just hours after fertilization. That includes the genes that regulate the first steps in embryonic development. The researchers describe the newly found mechanism in the scientific journal Genes and Development.

From a biological standpoint, life begins after fertilization: The organism has a gene expression program that regulates embryonic development from a single zygote -- that is, from the fusion of an egg cell and a sperm. In mammals, this new start occurs almost without any transcription in the zygote and rather uses gene transcripts and proteins that have been stored by the mother in the egg cell. Plants, however, have chosen a different strategy to ensure the transcription of the correct genes in the zygote: an intracellular signal pathway, activated by the sperm, adds phosphate residues to the transcription factor WRKY2 and ensures communication between the cell membrane and nucleus. As a consequence, this protein is enabled to activate the transcription of a master regulator, named WOX8, which controls the first steps of embryogenesis. In the case of the Arabidopsis thaliana, it includes, for instance, the formation of the shoot-root axis and the cell divisions that give rise to plant growth.

Nonetheless, WRKY2 alone cannot completely regulate the WOX8 transcription. It requires the help of additional transcription factors stemming from the maternal genes called HDG11 and HDG12. Only the combination of the sperm-activated WRKY2 and the maternally provided HDG proteins guarantees that the embryo regulation begins in the zygote. One obvious advantage of this collaboration is that the embryogenesis program is only activated when the egg cell and sperm fuse.

The study stands in contrast to the long-standing so-called „parental conflict theory" that has been proposed for plants and mammals: This theory holds that for embryonic nourishment the two parents act antagonistically. Whereas paternal gene copies favor nutrient supply to only their own offspring, the maternal gene copies tend to favor the distribution of resources among all offspring. The findings of the research group suggest that one must assume a new model for the initiation of embryonic development of plants that relies on both parents' cooperation.
-end-
Original publication:

Ueda, M., Aichinger, E., Gong, W., Groot, E., Verstraeten, I., Dai Vu, L., De Smet, I., Higashiyama, T., Umeda, M. and Laux, T. (2017). Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes and Development 31, S. 617-662.

Thomas Laux's research at the University of Freiburg http://www.biologie.uni-freiburg.de/LauxLab/welcome.htm

Contact:

Institute of Biology III

University of Freiburg

University of Freiburg

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
Proteins' fluorescence a little less mysterious
Rice University scientists use simulations to understand the mechanism behind a popular fluorescent protein used to monitor signals between neurons.
New study suggests health benefits of swapping animal proteins for plant proteins
Substituting one to two servings of animal proteins with plant proteins every day could lead to a small reduction in the three main cholesterol markers for cardiovascular disease prevention, a new study suggests.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.