Nav: Home

Bird feathers inspire researchers to produce vibrant new colors

May 08, 2017

Nagoya, Japan - A Nagoya University-led research team mimics the rich color of bird plumage and demonstrates new ways to control how light interacts with materials.

Bright colors in the natural world often result from tiny structures in feathers or wings that change the way light behaves when it's reflected. So-called "structural color" is responsible for the vivid hues of birds and butterflies. Artificially harnessing this effect could allow us to engineer new materials for applications such as solar cells and chameleon-like adaptive camouflage.

Inspired by the deep blue coloration of a native North American bird, Stellar's jay, a team at Nagoya University reproduced the color in their lab, giving rise to a new type of artificial pigment. This development was reported in Advanced Materials.

"The Stellar's jay's feathers provide an excellent example of angle-independent structural color," says last author Yukikazu Takeoka, "This color is enhanced by dark materials, which in this case can be attributed to black melanin particles in the feathers."

In most cases, structural colors appear to change when viewed from different perspectives. For example, imagine the way that the colors on the underside of a CD appear to shift when the disc is viewed from a different angle. The difference in Stellar's jay's blue is that the structures, which interfere with light, sit on top of black particles that can absorb a part of this light. This means that at all angles, however you look at it, the color of the Stellar's Jay does not change.

The team used a "layer-by-layer" approach to build up films of fine particles that recreated the microscopic sponge-like texture and black backing particles of the bird's feathers.

To mimic the feathers, the researchers covered microscopic black core particles with layers of even smaller transparent particles, to make raspberry-like particles. The size of the core and the thickness of the layers controlled the color and saturation of the resulting pigments. Importantly, the color of these particles did not change with viewing angle.

"Our work represents a much more efficient way to design artificially produced angle-independent structural colors," Takeoka adds. "We still have much to learn from biological systems, but if we can understand and successfully apply these phenomena, a whole range of new metamaterials will be accessible for all kinds of advanced applications where interactions with light are important."
-end-
The article, "Bio-inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background" was published in Advanced Materials at DOI: 10.1002/adma.201605050 .

Nagoya University

Related Color Articles:

Recovering color images from scattered light
Engineers at Duke University have developed a method for extracting a color image from a single exposure of light scattered through a mostly opaque material.
Deciphering how the brain encodes color and shape
There are hundreds of thousands of distinct colors and shapes that a person can distinguish visually, but how does the brain process all of this information?
Fish-inspired material changes color using nanocolumns
Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.
Iridescent color from clear droplets
Under the right conditions, ordinary clear water droplets on a transparent surface can produce brilliant colors, without the addition of inks or dyes.
Comparing antioxidants levels in tomatoes of different color
Greater levels of specific antioxidants were associated with particular colorations of tomato fruit.
Turning a porous material's color on and off with acid
Stable, color-changing compound shows potential for electronics, sensors and gas storage.
Color coded -- matching taste with color
Color can impact the taste of food, and our experiences and expectations can affect how we taste food, according to Penn State researchers, who suggest this may have implications for how food and beverage industries should market their products.
Discovery of a simplest mechanism for color detection
Color vision, ocular color detection is achieved with complicated neural mechanisms in the eyes.
Do spiders have a favorite color?
Scientists recently discovered the aptly named peacock jumping spiders have the color vision needed to appreciate the male's gaudy display.
Tiny spiders, big color
There's plenty that's striking about Phoroncidia rubroargentea, a species of spider native to Madagascar, starting with their size -- at just three millimeters, they're barely larger than a few grains of salt.
More Color News and Color Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.