Nav: Home

Bird feathers inspire researchers to produce vibrant new colors

May 08, 2017

Nagoya, Japan - A Nagoya University-led research team mimics the rich color of bird plumage and demonstrates new ways to control how light interacts with materials.

Bright colors in the natural world often result from tiny structures in feathers or wings that change the way light behaves when it's reflected. So-called "structural color" is responsible for the vivid hues of birds and butterflies. Artificially harnessing this effect could allow us to engineer new materials for applications such as solar cells and chameleon-like adaptive camouflage.

Inspired by the deep blue coloration of a native North American bird, Stellar's jay, a team at Nagoya University reproduced the color in their lab, giving rise to a new type of artificial pigment. This development was reported in Advanced Materials.

"The Stellar's jay's feathers provide an excellent example of angle-independent structural color," says last author Yukikazu Takeoka, "This color is enhanced by dark materials, which in this case can be attributed to black melanin particles in the feathers."

In most cases, structural colors appear to change when viewed from different perspectives. For example, imagine the way that the colors on the underside of a CD appear to shift when the disc is viewed from a different angle. The difference in Stellar's jay's blue is that the structures, which interfere with light, sit on top of black particles that can absorb a part of this light. This means that at all angles, however you look at it, the color of the Stellar's Jay does not change.

The team used a "layer-by-layer" approach to build up films of fine particles that recreated the microscopic sponge-like texture and black backing particles of the bird's feathers.

To mimic the feathers, the researchers covered microscopic black core particles with layers of even smaller transparent particles, to make raspberry-like particles. The size of the core and the thickness of the layers controlled the color and saturation of the resulting pigments. Importantly, the color of these particles did not change with viewing angle.

"Our work represents a much more efficient way to design artificially produced angle-independent structural colors," Takeoka adds. "We still have much to learn from biological systems, but if we can understand and successfully apply these phenomena, a whole range of new metamaterials will be accessible for all kinds of advanced applications where interactions with light are important."
-end-
The article, "Bio-inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background" was published in Advanced Materials at DOI: 10.1002/adma.201605050 .

Nagoya University

Related Color Articles:

Recovering color images from scattered light
Engineers at Duke University have developed a method for extracting a color image from a single exposure of light scattered through a mostly opaque material.
Deciphering how the brain encodes color and shape
There are hundreds of thousands of distinct colors and shapes that a person can distinguish visually, but how does the brain process all of this information?
Fish-inspired material changes color using nanocolumns
Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.
Iridescent color from clear droplets
Under the right conditions, ordinary clear water droplets on a transparent surface can produce brilliant colors, without the addition of inks or dyes.
Comparing antioxidants levels in tomatoes of different color
Greater levels of specific antioxidants were associated with particular colorations of tomato fruit.
More Color News and Color Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...