Nav: Home

Organic electronics: Semiconductors as decal stickers

May 08, 2017

No more error-prone evaporation deposition, drop casting or printing: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich and FSU Jena have developed organic semiconductor nanosheets, which can easily be removed from a growth substrate and placed on other substrates.

Today's computer processors are composed of billions of transistors. These electronic components normally consist of semiconductor material, insulator, substrate, and electrode. A dream of many scientists is to have each of these elements available as transferable sheets, which would allow them to design new electronic devices simply by stacking.

This has now become a reality for the organic semiconductor material pentacene: Dr. Bert Nickel, a physicist at LMU Munich, and Professor Andrey Turchanin (Friedrich Schiller University Jena), together with their teams, have, for the first time, managed to create mechanically stable pentacene nanosheets.

The researchers describe their method in the journal Advanced Materials. They first cover a small silicon wafer with a thin layer of a water-soluble organic film and deposit pentacene molecules upon it until a layer roughly 50 nanometers thick has formed. The next step is crucial: by irradiation with low-energy electrons, the topmost three to four levels of pentacene molecular layers are crosslinked, forming a "skin" that is only about five nanometers thick. This crosslinked layer stabilizes the entire pentacene film so well that it can be removed as a sheet from a silicon wafer in water and transferred to another surface using ordinary tweezers.

Apart from the ability to transfer them, the new semiconductor nanosheets have other advantages. The new method does not require any potentially interfering solvents, for example. In addition, after deposition, the nanosheet sticks firmly to the electrical contacts by van der Waals forces, resulting in a low contact resistance of the final electronic devices. Last but not least, organic semiconductor nanosheets can now be deposited onto significantly more technologically relevant substrates than hitherto.

Of particular interest is the extremely high mechanical stability of the newly developed pentacene nanosheets, which enables them to be applied as free-standing nanomembranes to perforated substrates with dimensions of tens of micrometers. That is equivalent to spanning a 25-meter pool with plastic wrap. "These virtually freely suspended semiconductors have great potential," explains Nickel. "They can be accessed from two sides and could be connected through an electrolyte, which would make them ideal as biosensors, for example". "Another promising application is their implementation in flexible electronics for manufacturing of devices for vital data acquisition or production of displays and solar cells," Turchanin says.
-end-


Ludwig-Maximilians-Universität München

Related Substrates Articles:

Psychedelic compound from magic mushrooms produced in yeast
Scientists from DTU Biosustain prove that psilocybin, a potential drug for treating depression and other psychological conditions can be produced in yeast.
eDNA provides researchers with 'more than meets the eye'
Researchers from Curtin University have used next generation DNA sequencing to learn more about the different species of plants, insects and animals present in the Pilbara and Perth regions of Western Australia.
Stress-relief substrate helps OLED stretch two-dimensionally?
Highly functional and free-form displays are critical components to complete the technological prowess of wearable electronics, robotics, and human-machine interfaces.
How to keep the nucleus clean
RNA turnover in the nuclei of eukaryotic cells is controlled by the RNA exosome aided by numerous cofactors.
Well-designed substrates make large single crystal bi-/tri-layer graphene possible
IBS CMCM scientists have reported the fabrication and use of single crystal copper-nickel alloy foil substrates for the growth of large-area, single crystal bilayer and trilayer graphene films.
Physicists shed new light on how liquids behave with other materials
Using a range of theoretical and simulation approaches, physicists from the University of Bristol have shown that liquids in contact with substrates can exhibit a finite number of classes of behavior and identify the important new ones.
SUTD researchers develop a rapid, low-cost method to 3D print microfluidic devices
Current 3D printed microfluidics are limited by multiple factors, such as available materials for 3D printing (e.g. optical transparency, flexibility, biocompatibility), achievable dimensions of microchannels by commercial 3D printers, integration of 3D printed microfluidics with functional materials or substrates.
KIST develops technology for creating flexible sensors on topographic surfaces
The Korea Institute of Science and Technology (KIST, president: Byung-gwon Lee) announced that Dr.
Simpler than expected: A microbial community with small diversity cleans up algal blooms
Algae blooms regularly make for pretty, swirly satellite photos of lakes and oceans.
Nanomaterials mimicking natural enzymes with superior catalytic activity and selectivity
A KAIST research team doped nitrogen and boron into graphene to selectively increase peroxidase-like activity and succeeded in synthesizing a peroxidase-mimicking nanozyme with a low cost and superior catalytic activity.
More Substrates News and Substrates Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.