# Refrigerator for quantum computers discovered

May 08, 2017Quantum physicist Mikko Möttönen and his team at Aalto University have invented a quantum-circuit refrigerator, which can reduce errors in quantum computing.

The global race towards a functioning quantum computer is on. With future quantum computers, we will be able to solve previously impossible problems and develop, for example, complex medicines, fertilizers, or artificial intelligence.

The research results published today in the scientific journal,

*Nature Communications*, suggest how harmful errors in quantum computing can be removed. This is a new twist towards a functioning quantum computer.

**Even a quantum computer needs cooling fins**

How quantum computers differ from the computers that we use today is that instead of normal bits, they compute with quantum bits, or qubits. The bits being crunched in your laptop are either zeros or ones, whereas a qubit can exist simultaneously in both states. This versatility of qubits is needed for complex computing, but it also makes them sensitive to external perturbations.

Just like ordinary processors, a quantum computer also needs a cooling mechanism. In the future, thousands or even millions of logical qubits may be simultaneously used in computation, and in order to obtain the correct result, every qubit has to be reset in the beginning of the computation. If the qubits are too hot, they cannot be initialized because they are switching between different states too much. This is the problem Möttönen and his group have developed a solution to.

**A refrigerator makes quantum devices more reliable**

The nanoscale refrigerator developed by the research group at Aalto University solves a massive challenge: with its help, most electrical quantum devices can be initialized quickly. The devices thus become more powerful and reliable.

"I have worked on this gadget for five years and it finally works!" rejoices Kuan Yen Tan, who works as a postdoctoral researcher in Möttönen's group.

Tan cooled down a qubit-like superconducting resonator utilizing the tunneling of single electrons through a two-nanometer-thick insulator. He gave the electrons slightly too little energy from an external voltage source than what is needed for direct tunneling. Therefore, the electron captures the missing energy required for tunneling from the nearby quantum device, and hence the device loses energy and cools down. The cooling can be switched off by adjusting the external voltage to zero. Then, even the energy available from the quantum device is not enough to push the electron through the insulator.

"Our refrigerator keeps quanta in order," Mikko Möttönen sums up.

Next, the group plans to cool actual quantum bits in addition to resonators. The researchers also want to lower the minimum temperature achievable with the refrigerator and make its on/off switch super fast.

-end-

Aalto University

**Related Quantum Computing Articles:**

Speeding-up quantum computing using giant atomic ions

An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing

Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

A platform for stable quantum computing, a playground for exotic physics

Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties, which not only paves the way for more stable quantum computing but also an entirely new platform to explore the wild world of exotic physics.

Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties, which not only paves the way for more stable quantum computing but also an entirely new platform to explore the wild world of exotic physics.

Diversity may be key to reducing errors in quantum computing

In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

'Valley states' in this 2D material could potentially be used for quantum computing

New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.

New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.

Sound of the future: A new analog to quantum computing

In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.

In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.

Imaging of exotic quantum particles as building blocks for quantum computing

Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.

Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.

Virginia Tech researchers lead breakthrough in quantum computing

A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.

A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.

Limitation exposed in promising quantum computing material

Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.

Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.

## Trending Science News

**Current Coronavirus (COVID-19) News**

## Top Science Podcasts

We have hand picked the**top science podcasts of 2020**.

**Now Playing: TED Radio Hour**

**Listen Again: Reinvention**

Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselvesthis hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.

**Now Playing: Science for the People**

**#562 Superbug to Bedside**

By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.

**Now Playing: Radiolab**

**Dispatch 6: Strange Times**

Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.