Nav: Home

Scientists can measure population change through chemicals found in feces

May 08, 2018

BINGHAMTON, N.Y. - Fecal stanols - organic molecules - located in sediment can give archaeologists new information about population numbers and changes, according to new research by faculty at Binghamton University, State University at New York.

"Archaeologists have just begun to explore how biomarkers like fecal stanols can provide information on past populations," said Carl Lipo, professor of anthropology at Binghamton University. "Traditionally, we have used coarse proxy measures such as houses and artifact numbers. These measures are plagued with problems, as this evidence may or may not be directly connected to changes in population sizes. Conditions of preservation, changes in settlement patterns, limited observations, shifts in subsistence activities, alteration in burial practices and so on can all lead to changes in artifacts without there being a connection to the number of people in the past environment."

Although other human materials can be unreliable in terms of population prediction, fecal stanols, which contain traces of human waste products, can be a more accurate clue into the history of a settlement. These organic molecules are present in sediment for hundreds to thousands of years.

In collaboration with colleagues at California State University Long Beach, Lipo studied a method of population change in a settlement called Cahokia, located just outside of St. Louis. The site is the location of one of the largest prehistoric populations in North America, existing between 600 to 1,500 years ago.

"Fecal stanols almost uniquely measure human presence in the environment," said Lipo. "While this work has been demonstrated in cold climates where preservation of stanols is more certain, this is one of the first archaeological cases where this method has been shown to work in a more temperate climate. The success here suggests that this way of studying past populations might very well lead to a revolution in our knowledge about the archaeological record around the world.

"In this study, we examined the abundance of fecal stanols in a lake core next to Cahokia," said Lipo. "What we found shows that population peaks for the site occur relatively early in its occupation and slowly decline. This finding contradicts suggestions that Cahokia underwent a 'collapse' event or was victim to massive floods that are known to have occurred."

This method of determining population change can be used to study other sites as well, said Lipo. He and Molly Patterson, assistant professor of geology at Binghamton University, are working on developing the technique at Binghamton.

"It has become relatively popular to think of the past as a series of periods in which cultures flourish and then catastrophically collapse," said Lipo. "Easter Island is a great example of this kind of thinking. While some of the interest in this kind of thinking relates to worries about our own future, the archaeological evidence often does not support such a view. Like Easter Island, Cahokia is often discussed as a cultural phenomenon that suddenly ends due to overpopulation or some natural catastrophe. Using empirical evidence available in the form of the fecal stanols, we can now see that the end of Cahokia was not so much a 'collapse' but a slow fading-away that took multiple centuries. Flooding events, for example, appeared to have had no effect on the relative population size."

The article, "An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois," was published in the Journal of Archaeological Science.
-end-


Binghamton University

Related Organic Molecules Articles:

Organic electronics: Semiconductors as decal stickers
No more error-prone evaporation deposition, drop casting or printing: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich and FSU Jena have developed organic semiconductor nanosheets, which can easily be removed from a growth substrate and placed on other substrates.
New organic lasers one step closer to reality
Researchers at Kyushu University's Center for Organic Photonics and Electronics Research have developed an optically pumped organic thin-film laser that can continuously emit light for 30 ms, which is more than 100 times longer than previous devices.
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Organic electronics can use power from socket
Organic light-emitting devices and printed electronics can be connected to a socket in the wall by way of a small, inexpensive organic converter, developed in a collaboration between Linköping University and Umeå University.
The repulsion trick: A self-solving puzzle for organic molecules
Jülich researchers have succeeded in controlling the growth of organic molecules using a special trick.
Metal-organic frameworks used as looms
Researchers of Karlsruhe Institute of Technology (KIT) have made major progress in the production of two-dimensional polymer-based materials.
New insights into the forms of metal-organic frameworks
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST), has introduced a new novel design strategy for synthesizing various forms of metal-organic materials (MOMs).
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Report provides options for organic soybean growers
Although soybeans are one of the most widely grown crops in the U.S., few soybean farmers are using organic practices.
Chemists design organic molecules that glow persistently at room temperature
LEDs have inspired a new generation of electronics, but there is still work ahead if we want luminescent materials to consume less energy and have longer lifespans.

Related Organic Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...