Chemistry breakthrough could speed up drug development

May 08, 2020

Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development.

Chemistry experts from Newcastle and Durham universities, working in collaboration with SPT Labtech, have grown the small crystals from nanoscale encapsulated droplets. Their innovative method, involving the use of inert oils to control evaporative solvent loss, has the potential to enhance the drug development pipeline.

Whilst crystallization of organic soluble molecules is a technique used by scientists all over the world, the ability to do so with such small quantities of analyte is ground-breaking.

Through the use of this new method, called Encapsulated Nanodroplet Crystallisation (ENaCt), the researchers have shown that hundreds of crystallisation experiments can be set up within a few minutes. Each experiment involves a few micrograms of molecular analyte dissolved in a few nanolitres of organic solvent and is automated, allowing for rapid set up of hundreds of unique experiments with ease. Concentration of these nanodroplet experiments results in the growth of the desired high quality single crystals that are suitable for modern X-ray diffraction analysis.

Publishing their findings in the journal Chem, the team, led by Drs Hall and Probert, of Newcastle University, UK, successfully developed a new approach to molecular crystallisation which allows access, within a few days, to high quality single crystals, whilst requiring only few milligrams of analyte.

Dr Hall, Senior Lecturer in Chemistry, Newcastle University, said: "We have developed a nanoscale crystallisation technique for organic-soluble small molecules, using high-throughput liquid-handling robotics to undertake multiple crystallisation experiments simultaneously with minimal sample requirements and high success rates.

"This new method has the potential to have far-reaching impact within the molecular sciences and beyond. Fundamental research will benefit from highly detailed characterisation of new molecules, such as natural products or complex synthetic molecules, by X-ray crystallography, whilst the development of new drugs by the pharmaceutical industry will be accelerated, through rapid access to characterised crystalline forms of new active pharmaceutical ingredients."

Understanding these new crystalline forms, known as polymorphs, is essential to the successful generation of new pharmaceutical agents and drugs. The ability to investigate these forms quickly and on a vast scale, whilst minimising the amount of analyte required, could be a key

Breakthrough enabled by the new ENaCT protocol.


Dr Paul Thaw from SPT Labtech, added: "Enabling this work to develop a novel high-throughput method for single crystal X-ray diffraction on mosquito® with the Newcastle team has been a pleasure. Having the ability to quickly screen organic soluble small molecules on the microgram scale will deliver valuable insight for both academic research and pharmaceutical drug design and validation."

Dr Probert, Senior Lecturer in Inorganic Chemistry and Head of Crystallography, Newcastle University, commented "...this new approach to crystallisation has the ability to transform the scientific landscape for the analysis of small molecules, not only in the drug discovery and delivery areas but also in the more general understanding of the crystalline solid state ..."

The whole team believe that the ENaCt methodology has the potential rewrite some of the preconceptions within the molecular sciences and beyond.
-end-
Reference

Encapsulated Nanodroplet Crystallization of Organic-Soluble Small Molecules

Tyler, et al., Chem (2020) DoI: https://doi.org/10.1016/j.chempr.2020.04.009

Newcastle University

Related Drug Development Articles from Brightsurf:

FDA support for oncology drug development during COVID-19
This Viewpoint from the U.S. Food and Drug Administration puts into context recent guidance on clinical trials during COVID-19 for oncology and shares insight regarding regulatory challenges and lessons learned.

COVID-19 drug development could benefit from approach used against flu
A new study from researchers at The University of Texas at Austin has found that some antivirals are useful for more than helping sick people get better -- they also can prevent thousands of deaths and hundreds of thousands of virus cases if used in the early stages of infection.

Chemistry breakthrough could speed up drug development
Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development.

New model of the GI tract could speed drug development
MIT engineers have devised a way to speed new drug development by rapidly testing how well they are absorbed in the small intestine.

Super-charging drug development for COVID-19
Researchers are using cell-free manufacturing to ramp up production of valinomycin, a promising drug that has proven effective in obliterating SARS-CoV in cellular cultures.

Drug development for rare diseases affecting children is increasing
The number of treatments for rare diseases affecting children has increased, a new study suggests.

New opportunity for cancer drug development
After years of research on cell surface receptors called Frizzleds, researchers at Karolinska Institutet in Sweden provide the proof-of-principle that these receptors are druggable by small molecules.

Novel paradigm in drug development
Targeted protein degradation (TPD) is a new paradigm in drug discovery that could lead to the development of new medicines to treat diseases such as cancer more effectively.

Turbo chip for drug development
In spite of increasing demand, the number of newly developed drugs decreased continuously in the past decades.

A breakthrough for brain tumor drug development
Glioblastoma is a devastating disease with poor survival stats due in part to a lack of preclinical models for new drug testing.

Read More: Drug Development News and Drug Development Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.