Transporting energy through a single molecular nanowire

May 08, 2020

Photosynthetic systems in nature transport energy very efficiently towards a reaction centre, where it is converted into a useful form for the organism. Scientists have been using this as inspiration to learn how to transport energy efficiently in, for example, molecular electronics. Physicist Richard Hildner from the University of Groningen and his colleagues have investigated energy transport in an artificial system made from nanofibres. The results were published in the Journal of the American Chemical Society.

'Natural photosynthetic systems have been optimized by billions of years of evolution. We have found this very difficult to copy in artificial systems,' explains Hildner, associate professor at the University of Groningen. In the light-harvesting complexes of bacteria or plants, light is converted into energy, which is then transported to the reaction centre with minimal losses.


Five years ago, Hildner and his colleagues developed a system in which disc-shaped molecules were stacked into nanofibres with lengths exceeding 4 micrometres and a diameter of just 0.005 micrometres. By comparison, the diameter of a human hair is 50-100 micrometres. This system can transport energy like the antennas in photosynthetic systems. 'But we sometimes saw that energy transport became stuck in the middle of our four micrometre-long fibres. Something in the system appeared to be unstable,' he recalls.

To improve the energy transport efficiency, Hildner and his colleagues created bundles of nanofibres. 'This is the same idea as that which is used in normal electronics: very thin copper wires are bundled together to create a more robust cable.' However, the bundled nanofibers turned out to be worse at transporting energy than single fibres.


The reason for this lies in something called coherence. When energy is put into the molecules that make up the fibres, it creates an excited state or exciton. However, this excited state is not a packet of energy that is associated with a single molecule. Hildner: 'The energy is delocalized over several molecules and it can, therefore, move fast and efficiently across the fibre.' This delocalization means that the energy moves like a wave from one molecule to the next. By contrast, without coherence, the energy is limited to a single molecule and must hop from one molecule to the next. Such hopping is a much slower way to transport energy.

'In the bundles, coherence is lost,' explains Hildner. This is caused by the strain that the bundle imposes on each fibre within it. 'The fibres are compressed and this causes side groups of the molecules to crash into each other.' This changes the energy landscape. In a single fibre, the energy of the excited states of several neighbouring molecules are at the same level. In a bundle, the local environments of the molecules differ, leading to a difference in energy levels.

Bike tour

'Imagine that you are on a bike tour. The height profile of the tour represents the energy levels in the molecules that make up the fibres,' says Hildner. 'If you are cycling in the Netherlands, you will arrive at your destination quickly because the terrain is flat. In contrast, in the Alps, you must cycle uphill quite often, which is tough and slows you down.' Thus, when the molecules' energy levels in the fibres are different, transport becomes more difficult.

This discovery means that the team's original idea, to increase energy transport efficiency using bundles of nanofibres, turned out to be a failure. However, they have learned valuable lessons from this, which can now be used by theoretical physicists to calculate how to optimize transport in molecular fibres. 'My colleagues at the University of Groningen are currently doing just that. But we already know one thing: if you want good energy transport in nanofibres, do not use bundles!'

Simple Science Summary

Plants and photosynthetic bacteria catch sunlight via molecular antennas, which then transfer the energy to a reaction centre with minimal losses. Scientists would like to make molecular wires that can transfer energy just as efficiently. Scientists at the University of Groningen created tiny fibres by stacking certain molecules together. Single fibres transport energy, although they sometimes malfunction. Creating bundles of fibres (as is done with copper wiring) was thought to be the solution but this turned out not to be the case. Energy moves fast when spread out across several molecules. In single fibres, this works well but in bundled fibres, this spreading out is hampered as the molecules experience strain. These results can be used to better understand energy transport along molecular wires, which will help in the design of better wires.
Reference: Bernd Wittmann, Felix A. Wenzel, Stephan Wiesneth, Andreas T. Haedler, Markus Drechsler, Klaus Kreger, Jürgen Köhler, E. W. Meijer, Hans-Werner Schmidt and Richard Hildner: Enhancing Long-Range Energy Transport in Supramolecular Architectures by Tailoring Coherence Properties. J. Am. Chem. Soc. First online 11 april 2020 Affiliations: University of Baytreuth, Germany; University of Eindhoven, the Netherlands; University of Groningen, the Netherlands.

University of Groningen

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to