Nav: Home

Cataloging the structural variations in human genetics

May 09, 2007

A major new effort to uncover the medium- and large-scale genetic differences between humans may soon reveal DNA sequences that contribute to a wide range of diseases, according to a paper by Howard Hughes Medical Institute investigator Evan Eichler and 17 colleagues published in the May 10, 2007, Nature. The undertaking will help researchers identify structural variations in DNA sequences, which Eichler says amount to as much as five to ten percent of the human genome.

Past studies of human genetic differences usually have focused on the individual "letters" or bases of a DNA sequence. But the genetic differences between humans amount to more than simple spelling errors. "Structural changes -- insertions, duplications, deletions, and inversions of DNA -- are extremely common in the human population," says Eichler. "In fact, more bases are involved in structural changes in the genome than are involved in single-base-pair changes."

In some cases, individual genes appear in multiple copies because of duplications of DNA segments. In other cases, segments of DNA appear in some people but not others, which means that the "reference" human genome produced by the Human Genome Project is incomplete. "We're finding new sequence in the human genome that is not in the reference sequence," Eichler says.

These structural changes can influence both disease susceptibility and the normal functioning and appearance of the body. Color-blindness, increased risk of prostate cancer, and susceptibility to some forms of cardiovascular disease result from deletions of particular genes or parts of genes. Extra copies of a gene known as CC3L1 reduce a person's susceptibility to HIV infection and progression to AIDS. Lower than normal quantities of other genes can lead to intestinal or kidney diseases.

Variation in the number of genes or in gene regulation caused by structural rearrangements may also contribute to more common diseases. "The million dollar question is what is the genetic basis of diseases like diabetes, hypertension, and high cholesterol levels"" says Eichler. "We know there is a genetic factor, but what is the role of single base pair changes versus structural changes""

The project Eichler and his colleagues describe in their paper will help answer this question. Using DNA from 62 people who were studied as part of the International HapMap Project, they are creating bacterial "libraries" of DNA segments for each person. The ends of the segments are then sequenced to uncover evidence of structural variation. Whenever such evidence is found, the entire DNA segment is sequenced to catalog all of the genetic differences between the segment and the reference sequence.

The result, says Eichler, will be a tool that geneticists can use to associate structural variation with particular diseases. "It might be that if I have an extra copy of gene A, my threshold for disease X may be higher or lower." Geneticists will then be able to test, or genotype, large numbers of individuals who have a particular disease to look for structural variants that they have in common. If a given variant is contributing to a disease, it will occur at a higher frequency in people with the disease.

Knowing about structural variation in the human genome will also allow geneticists to analyze single-base-pair changes more effectively, according to Aravinda Chakravarti, a geneticist at The Johns Hopkins University School of Medicine who was not a coauthor of the paper. "We have to look at structural variants from a different perspective, because they are adding or subtracting something from the genome," Chakravarti says. By understanding the patterns of both structural variants and single-base-pair changes in the population, "we'll learn a lot." To use both kinds of information in tandem, Eichler and his colleagues plan to incorporate the structural information they gather into existing databases on single-base-pair changes.

The project, which is being funded by the National Human Genome Research Institute at the National Institutes of Health, is difficult and expensive, Eichler admits. "It's a lot of work, because it's essentially doing 62 additional human genome projects," he says. "Having been involved in the first one, I swore I would never do it again. But in this case we're looking at the coolest parts of the genome."
-end-


Howard Hughes Medical Institute

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The definitive insider's history of the genetic revolution--significantly updated to reflect the discoveries of the last decade.

James D. Watson, the Nobel laureate whose pioneering work helped unlock the mystery of DNA's structure, charts the greatest scientific journey of our time, from the discovery of the double helix to today's controversies to what the future may hold. Updated to include new findings in gene editing, epigenetics, agricultural chemistry, as well as two entirely new chapters on personal genomics and cancer research. This is the most comprehensive and... View Details


The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Unlock the secrets in your DNA!

Discover the answers to your family history mysteries using the most-cutting edge tool available. This plain-English guide is a one-stop resource for how to use DNA testing for genealogy. Inside, you'll find guidance on what DNA tests are available, plus the methodologies and pros and cons of the three major testing companies and advice on choosing the right test to answer your specific genealogy questions. And once you've taken a DNA test, this guide will demystify the often-overwhelming subject and explain how to interpret DNA test results,... View Details


The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google
by Scott Galloway (Author)

NEW YORK TIMES BESTSELLER
USA TODAY 
BESTSELLER


Amazon, Apple, Facebook, and Google are the four most influential companies on the planet. Just about everyone thinks they know how they got there. Just about everyone is wrong. 

For all that’s been written about the Four over the last two decades, no one has captured their power and staggering success as insightfully as Scott Galloway.

Instead of buying the myths these compa­nies broadcast, Galloway asks fundamental questions. How did the Four infiltrate our lives so completely that... View Details


Native American DNA: Tribal Belonging and the False Promise of Genetic Science
by Kim TallBear (Author)


Who is a Native American? And who gets to decide? From genealogists searching online for their ancestors to fortune hunters hoping for a slice of casino profits from wealthy tribes, the answers to these seemingly straightforward questions have profound ramifications. The rise of DNA testing has further complicated the issues and raised the stakes.


In Native American DNA, Kim TallBear shows how DNA testing is a powerful—and problematic—scientific process that is useful in determining close biological relatives. But tribal membership is a legal category that has... View Details


The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

A new classic, cited by leaders and media around the globe as a highly recommended read for anyone interested in innovation.

In The Innovator’s DNA, authors Jeffrey Dyer, Hal Gregersen, and bestselling author Clayton Christensen (The Innovator’s Dilemma, The Innovator’s Solution, How Will You Measure Your Life?) build on what we know about disruptive innovation to show how individuals can develop the skills necessary to move progressively from idea to impact.

By identifying behaviors of the world’s best innovators—from leaders at Amazon and... View Details


DNA Science: A First Course, Second Edition
by David Micklos (Author), Greg Freyer (Author)

This is the second edition of a highly successful textbook (over 50,000 copies sold) in which a highly illustrated, narrative text is combined with easytouse thoroughly reliable laboratory protocols. It contains a fully uptodate collection of 12 rigorously tested and reliable lab experiments in molecular biology, developed at the internationally renowned Dolan DNA Learning Center of Cold Spring Harbor Laboratory, which culminate in the construction and cloning of a recombinant DNA molecule. Proven through more than 10 years of teaching at research and nonresearch colleges and universities,... View Details


The DNA of Relationships
by Gary Smalley (Author)

“Life is relationships; the rest is just details.” We are designed for relationships, yet they often bring us pain. In this paradigm-shifting book, Dr. Gary Smalley unravels the DNA of relationships: We are made for three great relationships―with God, others, and ourselves―and all relationships involve choice. Gary exposes a destructive relationship dance that characterizes nearly every relationship conflict, and he offers five new dance steps that will revolutionize relationships. The DNA of Relationships, the cornerstone book in Gary Smalley's relationship campaign, will help you... View Details


The DNA Restart: Unlock Your Personal Genetic Code to Eat for Your Genes, Lose Weight, and Reverse Aging
by Dr. Sharon Moalem (Author), Nobu Matsuhisa (Foreword)

The DNA Restart turns traditional dietary advice on its head with groundbreaking research that demonstrates that we all require different diets based on our genes.

In The DNA Restart, Sharon Moalem, MD, PhD, provides a revolutionary step-by-step guide to the diet and lifestyle perfect for your individual genetic makeup. A physician, scientist, neurogeneticist, and New York Times bestselling author, Dr. Moalem has spent the last two decades researching and formulating how to reset your own genetic code using five essential pillars: eat for your genes; reverse... View Details


The Language of Life: DNA and the Revolution in Personalized Medicine
by Francis S Collins (Author)

"His groundbreaking work has changed the very ways we consider our health and examine disease.” —Barack Obama

From Dr. Francis Collins, director of the National Institute of Health, 2007 recipient of the Presidential Medal of Freedom, and 15-year head of the Human Genome Project, comes one of the most important medical books of the year: The Language of Life. With accessible, insightful prose, Dr. Collins describes the medical, scientific, and genetic revolution that is currently unlocking the secrets of “personalized medicine,” and offers practical advice on how to... View Details


Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

Humorous, fascinating, and science based, the bestselling first edition of Move Your DNA has been updated and expanded to include a comprehensive three-level exercise program.

In layperson-friendly terms Move Your DNA addresses the vast quantities of disease we are suffering from, identifying our lack of movement as the primary cause. Readers can use the corrective exercises and lifestyle changes Katy Bowman has created to help each of us transition to healthy, naturally moving bodies. Move Your DNA explains the science behind our need for natural movement right down... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#457 Trowel Blazing
This week we look at some of the lesser known historical figures and current public perception of anthropology, archaeology, and other fields that end in "ology". Rebecca Wragg Sykes, an archaeologist, writer, and co-founder of the TrowelBlazers, tells us about the Raising Horizons project and how their team is trying to shine the spotlight on the forgotten historical women of archaeological, geological, and palaeontological science. And Kristina Killgrove, assistant professor of anthropology at the University of West Florida and science writer, talks about the public perception of the fields of anthropology and archeology, and how those science are represented -...