Chemist stitches up speedier chemical reactions

May 09, 2010

Some people have streets named after them. Warren Piers, a chemistry professor at the University of Calgary, has a catalyst penned after him.

And in a paper published today in the online edition of Nature Chemistry, Piers and former graduate student Edwin van der Eide reveal the inner workings of the Piers catalyst at a molecular level of detail not previously available.

"These details are critical for the development of improved catalysts," says Piers, the paper's co-author and S. Robert Blair Professor of chemistry at the University of Calgary. "It will help us and others find new applications and improved reaction conditions for these catalysts."

A chemical catalyst is a molecule that speeds up a chemical reaction without being consumed in the reaction. Enzymes are nature's catalysts, but humankind has invented catalysts that improve and are often required to drive many commercially important chemical reactions.

Catalysts are so versatile that they are used in many chemical industries, ranging from commodity chemicals, those produced on a large scale, to fine chemicals, specialty products like pharmaceuticals, for example.

Catalysts allow companies to make products more economically (lower energy costs) and more selectively (less waste). The details revealed in this paper open the door to new products and materials, creating new companies and markets. One new application involves the production of biofuel hydrocarbon products from seed oils derived from plants.

The paper explores at a level of detail not seen before the inner workings of a chemical reaction called "olefin metathesis." If knitting a wool sweater, catalysts can be thought of as the knitting needles, while the particular stitches required to fashion the wool into a pattern can be viewed as the chemical reaction.

"When we apply this to chemistry, you could say that the stitches -olefin metathesis reactions- have been around for some time. Chemists have been working for decades to figure out which needles do the work most efficiently," says Piers, whose discovery of more efficient olefin metathesis catalysts is now connected with his name.

"The results of this paper are valuable because we now know important details about a significant reaction," he explains. "The olefin metathesis reaction provides an extremely versatile method to break and reform carbon-carbon bonds in materials used in the manufacture of chemical products."

Materia Inc., a Pasadena-based chemical technology company, has the first rights to further develop and commercialize Piers' technology, which is licensed through UTI. Materia was keen to add Piers' technology to their library of catalysts to make their portfolio more versatile.

The Piers catalyst is related to the Nobel Prize-winning family of catalysts known as the Grubbs catalyst, named for their discoverer Robert Grubbs of Caltech. The Piers system has unique chemical attributes that Materia is hoping to exploit in new applications. While not yet as widely used as the Grubbs catalyst, there is strong growth potential for the Piers catalyst due to its high reactivity.
-end-
Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction by Edwin F. van der Eide and Warren E. Piers is published in Nature Chemistry at http://www.nature.com/nchem/index.html.

University of Calgary

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.