Nav: Home

A calcium pump caught in the act

May 09, 2016

The enzyme is the calcium-pumping Ca2+-ATPase - an ion pump protein that maintains a concentration of calcium inside the cell, which is about 20,000 times lower than outside. Only, it does not pump the calcium ions out of the cell, but instead into a compartment in the cell called the sarco-endoplasmic reticulum.

Such a pumping activity requires energy - a lot of energy - which comes from a two-step cleavage of the energy-rich molecule called ATP. In fact Ca2+-ATPases and related ion pumps such as the sodium-potassium pump (Na+,K+-ATPase) spend about one-third of the ATP consumed in the body and up to 75% in the brain, since these large ion concentration gradients drive so many other processes in the cell, in fact quite similar to the electric power of a battery.

As a consequence of their vital importance, impaired activity of the ion pumps - such as by mutations or toxic compounds inhibiting them - is associated with diseases. Oppositely, the ion pumps can be targeted by medical drugs to alleviate ionic imbalances associated with disease, or they can be targeted in cancer cells or pathogenic organisms that then die. It is therefore very important to know how they work at an atomic level.

To gain such insight, the research team used X-ray crystallography after having crystallized the calcium pump in a state that mimics the last step of the ATP cleaving reaction. In this state, a phosphoenzyme middle-product is cleaved to liberate free phosphate as the final product of the ATPase reaction, and after calcium has been released into the sarco-endoplasmic reticulum store.

This step is closely mimicked by vanadate, where the phosphorus atom is replaced by vanadium and therefore produces a stable complex instead of a short-lived transition state. Like this a very accurate view of how the enzyme stabilizes the transition state and catalyzes the final step of the ATP cleavage reaction becomes available for detailed analysis.

This kind of insight is of key importance to our understanding of cellular processes of health and disease at a molecular level. Calcium pumps are intimately involved in the activity of muscle, such as the heart, and therefore they are considered important targets for development of new drugs for cardiovascular diseases. The calcium pumps are also associated with metabolism and energy consumption overall and therefore generally connected to health.

The two first authors on the paper have now moved on to new drug discovery research in the Danish biotech company Pcovery (Johannes Clausen), and as an associate professor at the University of Oxford (Maike Bublitz), respectively.
-end-
The study was published in the journal Structure: http://www.cell.com/structure/pdf/S0969-2126(16)00077-0.pdf

For further information, please contact:

Professor Poul Nissen
Department of Molecular Biology and Genetics/DANDRITE
Aarhus University, Denmark
pn@mbg.au.dk - +45 2899 2295

Aarhus University

Related Calcium Articles:

'Give me the calcium!' Tulane virus takes over cellular calcium signaling to replicate
Researchers uncover the first piece of functional evidence suggesting that Tulane virus and human norovirus use viroporins to control cellular calcium signaling.
Carbon dots make calcium easier to track
Prof. DONG Wenfei's research group from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) has developed a new type of fluorescent carbon dot that can effectively detect calcium levels in cells.
Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.
Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.
New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.
Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.
Memory molecule limits plasticity by calibrating calcium
Researchers at the Max Planck Florida Institute for Neuroscience in collaboration with researchers at Emory University and the National Institute of Environmental Health Sciences, have for the first time identified a novel role for the CA2-enriched protein RGS14 and provided insights into the mechanism by which it limits plasticity.
A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.
The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.
Communication via calcium wave
The hormone auxin is a key regulator of plant growth and development.
More Calcium News and Calcium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.