Nav: Home

The sun's magnetic field during the grand minimum is in fact at its maximum

May 09, 2016

Research result: The Sun's magnetic field during the grand minimum is in fact at its maximum

The study of the Sun's long-term variation over a millennium by means of super computer modelling showed that during a time period of the Maunder Minimum type, the magnetic field may hide at the bottom of the convection zone.

The study conducted by the Aalto University Department of Computer Science, the ReSoLVE Centre of Excellence and the Max Planck Institute for Solar System Research seeks explanation for the mechanisms underlying the long-term variation in solar activity. The research team comprised Maarit Käpylä, Petri Käpylä, Nigul Olspert, Axel Brandenburg, Jaan Pelt, Jörn Warnecke and Bidya B. Karak. The recently published study was carried out by running a global computer model of the Sun on Finland's most powerful super computer over a period of six months.

'The Sun has an 11-year cycle that involves, among other things, the occurrence and disappearance of sunspots. The phenomena that occur in the Sun - including the cycle - change with time, so the solutions need to be integrated over time. Short-term variation is not interesting for the purposes of studying the space climate, for example,' says Maarit Käpylä, head of the DYNAMO team, who conducts astroinformatics or computational astrophysics and data-analysis at the Department of Computer Science.

As a result of the computation carried out, currently the world's longest numerical simulation was created that produces a solar-like dynamo solution complete with its long-term variation.

'The Sun as such is impossible to replicate on present-day computers - or those of the near future - due to its strong turbulence. And indeed we are not claiming that this modelling would really be the Sun. Instead, it is a 3D construction of various solar phenomena by means of which the star that runs our space climate can be better understood,' Käpylä explains.

What exactly is a grand minimum?

The largest surprise of the study relates to the Sun's silent periods known as grand minima, of which the Maunder Minimum is perhaps the best known. The solar magnetic field is thought to wither during it and be so weak as not being capable of generating sunspots or other activity.

'In fact, the magnetic field is at its maximum during the Maunder Minimum. Thus far, we have only been able to examine what is visible on the solar surface, but simulations enable us to see below the surface. During the Maunder Minimum, the magnetic field sinks to the bottom of the convection zone and is very strong there,' says Käpylä

The outer layer of the Sun, the convection zone, is like a boiling kettle with its moving and heat-transferring bubbles, and this not only generates a magnetic field, but also makes the entire area turbulent. Maarit Käpylä will start as an independent group leader at one of Europe's leading solar research units, Max Planck Institute for Solar System Research, in the summer of 2016. The operations of the Aalto DYNAMO team at the ReSoLVE Centre of Excellence will continue under Käpylä's direction, focusing on even larger simulations using graphical processing units.
-end-
More information:

Maarit Käpylä
Aalto University, Department of Computer Science
+358504301059
maarit.kapyla@aalto.fi

Article: http://www.aanda.org/articles/aa/pdf/2016/05/aa27002-15.pdf

Caption: About 80 solar cycles seen from the surface, i.e. more than 1,000 years in solar time, modelled by means of a computer simulation. At 20-50 years in simulation time, a simulated grand minimum occurs, which in actual fact is the maximum of magnetic energy.

Aalto University

Related Magnetic Field Articles:

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.