Nav: Home

First single-enzyme method to produce quantum dots revealed

May 09, 2016

Quantum dots (QDs) are semiconducting nanocrystals prized for their optical and electronic properties. The brilliant, pure colors produced by QDs when stimulated with ultraviolet light are ideal for use in flat screen displays, medical imaging devices, solar panels and LEDs. One obstacle to mass production and widespread use of these wonder particles is the difficulty and expense associated with current chemical manufacturing methods that often requiring heat, high pressure and toxic solvents.

But now three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method. Their work was recently featured in an article in The New York Times called "A curious tale of quantum dots."

The Lehigh team-- Bryan Berger, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering; Chris Kiely, Harold B. Chambers Senior Professor, Materials Science and Engineering and Steven McIntosh, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering, along with Ph.D. candidate Li Lu and undergraduate Robert Dunleavy--have detailed their findings in an article called "Single Enzyme Biomineralization of Cadmium Sulfide Nanocrystals with Controlled Optical Properties" published in the Proceedings of the National Academy of Sciences (PNAS).

"The beauty of a biological approach is that it cuts down on the production needs, environmental burden and production time quite a lot," says Berger.

In July of last year, the team's work was featured on the cover of Green Chemistry describing their use of "directed evolution" to alter a bacterial strain called Stenotophomonas maltophilia to selectively produce cadmium sulphide QDs. Because they discovered that a single enzyme produced by the bacteria is responsible for QD generation, the cell-based production route was scrapped entirely. The cadmium sulphide QDs, as they have now shown in the PNAS article, can be generated with the same enzyme synthesized from other easily engineered bacteria such as E. coli.

"We have evolved the enzyme beyond what nature intended," says Berger, engineering it to not only make the crystal structure of the QDs, but control their size. The result is the ability to uniformly produce quantum dots that emit any particular color they choose--the very characteristic that makes this material attractive for many applications.

Industrial processes take many hours to grow the nanocrystals, which then need to undergo additional processing and purifying steps. Biosynthesis, on the other hand, takes minutes to a few hours maximum to make the full range of quantum dot sizes (about 2 to 3 nanometers) in a continuous, environmentally friendly process at ambient conditions in water that needs no post-processing steps to harvest the final, water-soluble product.

Perfecting the methodology to structurally analyze individual nanoparticles required a highly sophisticated Scanning Transmission Electron Microscope (STEM). Lehigh's Electron Microscopy and Nanofabrication Facility was able to provide a $4.5 million state-of-the-art instrument that allowed the researchers to examine the structure and composition of each QD, which is only composed of tens to hundreds of atoms.

"Even with this new microscope, we're pushing the limits of what can be done," says Kiely.

The instrument scans an ultra-fine electron beam across a field of QDs. The atoms scatter the electrons in the beam, producing a kind of shadow image on a fluorescent screen, akin to the way an object blocking light produces a shadow on the wall. A digital camera records the highly magnified atomic resolution image of the nanocrystal for analysis.

The team is poised to scale-up its laboratory success into a manufacturing enterprise making inexpensive QDs in an eco-friendly manner. Conventional chemical manufacturing costs $1,000 to $10,000 per gram. A biomanufacturing technique could potentially slash the price by at least a factor of 10, and the team estimates yields on the order of grams per liter from each batch culture, says McIntosh.

Taking a long view, the three colleagues hope that their method will lead to a plethora of future QD applications, such as greener manufacturing of methanol, an eco-friendly fuel that could be used for cars, heating appliances and electricity generation. Water purification and metal recycling are two other possible uses for this technology.

"We want to create many different types of functional materials and make large-scale functional materials as well as individual quantum dots," says McIntosh.

He imagines developing a process by which individual quantum dots arrange themselves into macrostructures, the way nature grows a mollusk shell out of individual inorganic nanoparticles or humans grow artificial tissue in a lab.

"If we're able to make more of the material and control how it's structured while maintaining its core functionality, we could potentially get a solar cell to assemble itself with quantum dots."
-end-


Lehigh University

Related Quantum Dots Articles:

Modified quantum dots capture more energy from light and lose less to heat
Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.
Using quantum dots and a smartphone to find killer bacteria
A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.
Synthesizing single-crystalline hexagonal graphene quantum dots
A KAIST team has designed a novel strategy for synthesizing single-crystalline graphene quantum dots, which emit stable blue light.
US Naval Research Laboratory 'connects the dots' for quantum networks
Researchers at the US Naval Research Laboratory developed a novel technique that could enable new technologies that use properties of quantum physics for computing, communication and sensing, which may lead to 'neuromorphic' or brain-inspired computing.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
More Quantum Dots News and Quantum Dots Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...