Nav: Home

Novel functionalized nanomaterials for CO2 capture

May 09, 2016

Climate change due to excessive CO2 levels is one of the most serious problems mankind has ever faced. This has resulted in abrupt weather patterns such as flood and drought, which are extremely disruptive and detrimental to life, as we have been witnessing in India in recent years. Mitigating rising CO2 levels is of prime importance. In a new development, scientists at the Tata Institute of Fundamental Research, Mumbai, have developed a novel design of CO2 sorbents that show superior CO2 capture capacity and stability over conventional materials.

The immobilization of functional amines on a porous solid support can result in stable and efficient CO2 sorbent materials compared to similar liquid sorbents. A critical disadvantage however, is a drastic decrease in the textural properties of these supports (i.e., their surface area and pore volume), leading to a decrease in the CO2 capture capability.

To overcome this challenge, scientists at TIFR Mumbai, have designed novel functionalised nanomaterials that allows higher amine loading with a minimal decrease in surface area.

"Our fibrous nanosilica (KCC-1) should be a good candidate for use as a support to design efficient CO2 sorbents that would allow better capture capacity, kinetics and recylability", says Dr Vivek Polshettiwar, the lead scientist of this study. A unique feature of KCC-1 is its high surface area, which originates from its fibrous morphology and not from its mesoporous channels (unlike in other well studied materials like SBA-15 or MCM-41). This study, published recently in the Journal of Materials Chemistry A, demonstrates the usefulness of the fibrous morphology of KCC-1 compared to conventional ordered mesoporous silica. This work is in continuation of the teams efforts to develop sustainable catalysts and sorbents.

The KCC-1-based sorbents showed several advantages over conventional silica-based sorbents, including i) high amine loading, ii) minimum reduction in surface area after functionalization and iii) more accessibility of the amine sites to enhance CO2 capture efficiency (i.e., capture capacity, kinetics and recyclability), due to the fibrous structure and high accessible surface area of KCC-1.

The demand for such efficient sorbents is on the rise since CO2 capture is one of the best solutions to mitigate the rising levels of CO2. Solid sorbents exhibit better efficiency with greater potential to overcome the shortcomings of liquid sorbents. The use of mesoporous silica materials functionalized with various amino groups is well reported. Although materials like SBA-15 and MCM-41, for example, have attracted significant attention because their large pore sizes can accommodate a variety of amine molecules and the high surface area allows for a higher loading of these functional molecules, they suffer from the disadvantages of a decrease in textural properties, thus making KCC-1 a suitable candidate for more efficient CO2 capture.
-end-


Tata Institute of Fundamental Research

Related Surface Area Articles:

New theory predicts wetted area of droplets colliding with flat surface
Japanese researchers have succeeded in deriving a theoretical formula that quantitatively predicts the wetting and spreading behavior of droplets that collide with the flat surface of a solid material.
Neonicotinoids detected in drinking water in agricultural area
Concern over the use of neonicotinoid pesticides is growing as studies find them in rivers and streams, and link them with declining bee populations and health effects in other animals.
Planned protection area would help basking sharks
A proposed Marine Protected Area off Scotland's west coast would help basking sharks, researchers say.
Bay Area methane emissions may be double what we thought
Emissions of methane, a potent climate-warming gas, in the San Francisco Bay Area may be roughly twice as high as official estimates, with most of it coming from biological sources, such as landfills, but natural gas leakage also being an important source, according to a new study from Berkeley Lab.
Irish surgeon identifies emerging area of medical science
In a review published in the November issue of The Lancet Gastroenterology & Hepatology, Professor J.
More Surface Area News and Surface Area Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...