More than half of streamflow in the upper Colorado River basin originates as groundwater

May 09, 2016

More than half of the streamflow in the Upper Colorado River Basin originates as groundwater, according to a new U.S. Geological Survey study published today in the journal Water Resources Research.

The entire Colorado River Basin currently supports 50 million people, and that amount is expected to increase by 23 million between 2000 and 2030. On average, 90 percent of streamflow in the Colorado River Basin originates in the Upper Basin, which is the area above Lees Ferry, Arizona. This water has a multitude of uses that include irrigation, municipal and industrial purposes, electric power generation, mining activities, recreation, and supporting habitat for livestock, fish and wildlife.

Scientists used a new method to more accurately estimate the percentage of groundwater that supports streamflow. Researchers studied long-term records of water chemistry and streamflow data at 146 sites in the Upper Colorado River Basin in Colorado, Utah, New Mexico and Arizona. These data were then analyzed to create a model to predict and map where streamflow originates in the basin. On average, 56 percent of the streamflow in the basin originated from groundwater.

"These findings could help decision makers effectively manage current and future water resources in the Colorado River Basin," said Matthew Miller, a USGS scientist and the lead author of the study. "In light of recent droughts, predicted climate changes and human consumption, there is an urgent need for us all to continue to think of groundwater and surface water as a single resource."

The model estimates the amount of water lost during stream transport to the Lower Colorado River Basin, which is due largely to withdrawals for irrigation and evaporation to the atmosphere. In the high elevation headwaters of the Colorado River Basin, there is a greater percentage of snowmelt and precipitation contributing to the surface-water streamflow. As water flows further into the basin at lower elevations, a greater percentage of streamflow is from groundwater.

These results provide a modeled snapshot of present-day groundwater and surface water conditions at a regional scale and will serve as a foundation for future studies that predict groundwater response to climate and human induced change.

"This is a step in the right direction to further our ability to address regional to global scale water management challenges in both the Upper Colorado River Basin and other watersheds throughout the world," said Miller.

Water data were analyzed using the USGS Spatially Referenced Regressions On Watershed attributes (SPARROW) water-quality modeling framework. Information on SPARROW modeling applications, data and documentation can be accessed online.
-end-
The study was conducted by the USGS WaterSMART initiative and the USGS National Water Quality Assessment Project of the National Water Quality Program.

US Geological Survey

Related Groundwater Articles from Brightsurf:

Majority of groundwater stores resilient to climate change
Fewer of the world's large aquifers are depleting than previously estimated, according to a new study by the University of Sussex and UCL.

Monitoring groundwater changes more precisely
A new method could help to track groundwater changes better than before.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

Shrub encroachment on grasslands can increase groundwater recharge
A new study led by Adam Schreiner-McGraw, a postdoctoral hydrology researcher at the University of California, Riverside, modeled shrub encroachment on a sloping landscape and reached a startling conclusion: Shrub encroachment on slopes can increase the amount of water that goes into groundwater storage.

River-groundwater hot spot for arsenic
Naturally occurring groundwater arsenic contamination is a problem of global significance, particularly in South and Southeast Asian aquifers.

Groundwater, a threatened resource requiring sustainable management
The WEARE group at the University of Cordoba analyzed a case of aquifer recovery and concluded that supervision, governance and use of water for high value crops are some of the keys to guaranteeing sustainability of these reserves

Co-occurring contaminants may increase NC groundwater risks
Eighty-four percent of the wells sampled in the Kings Mountain Belt and the Charlotte and Milton Belts of the Piedmont region of North Carolina contained concentrations of vanadium and hexavalent chromium that exceeded health recommendations from the North Carolina Department of Health and Human Services.

Fresh groundwater flow important for coastal ecosystems
Groundwater is the largest source of freshwater, one of the world's most precious natural resources and vital for crops and drinking water.

Natural contaminant threat to drinking water from groundwater
Climate change and urbanisation are set to threaten groundwater drinking water quality, new research from UNSW Sydney shows.

Switching to solar and wind will reduce groundwater use
IIASA researchers explored optimal pathways for managing groundwater and hydropower trade-offs for different water availability conditions as solar and wind energy start to play a more prominent role in the state of California.

Read More: Groundwater News and Groundwater Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.