Nav: Home

UCI sleuths search the seas for soot

May 09, 2016

Irvine, Calif., May 9, 2016 - Earth system scientists from the University of California, Irvine have taken water samples from the north Pacific, north and south Atlantic, and Arctic oceans in search of repositories of black carbon, soot from burning biomass and diesel engines, among other sources. They've found considerably less of the material than expected, and they've discovered that it exists in at least two varieties, a younger pool closer to the ocean's surface that is absorbed into the environment in a roughly 100-year cycle and an ancient reserve that remains stable for millennia.

"We find that, indeed, black carbon resides in the oceans for tens of thousands of years, yet it's not as abundant as you'd expect given its relatively inert structure and the sheer quantity of it being produced on land," said Alysha Coppola, Ph.D. '15, lead author on a study published today in Geophysical Research Letters. "It seems that all of the black carbon emitted into the environment every year may not persist as a 'locked' chemical structure in the carbon cycle; some of it likely gets degraded back to CO2 by other loss processes."

Ellen Druffel, UCI professor of Earth system science and senior author on the study added, "As we're changing the planet, burning more material and producing more black carbon, we need to understand where it is going; we just don't, and that's a huge red flag. Given what we know about how much black carbon is generated and our understanding of the rates at which we think it breaks down, we should be knee-deep in this stuff. There apparently are some big sink mechanisms that we don't yet understand."

Climate scientists expect even more of this material to be ejected into the environment as the planet heats up and forest fires become more prevalent. Up to 27 percent of it is retained as char or soot instead of returning to the atmosphere as CO2, researchers said. Black carbon is a particularly strong agent of climate change, itself, as it absorbs sunlight, trapping heat on Earth. Particles thrown into the atmosphere through fossil fuel or biomass burning can land on ice and snow in the Arctic, reducing reflectivity.

Coppola said black carbon is produced from incomplete combustion of fuels and moves through the carbon cycle at a much slower pace than unburnt carbon. A tree grows then dies on a roughly 100-year timescale. But after a forest fire, some of the carbon from trees is converted into a more complicated and resilient structure that is harder for microbes to break down.

"Black carbon is like rubber tires that don't degrade quickly in the environment," Coppola said. "It probably gets broken down by sunlight or microbes, but these processes can take up to a millennia. We also don't know and understand completely how this relatively stable structure degrades. What likely happens is that the molecules move around through deep ocean circulation, and are then broken apart by sunlight when deep Antarctic waters upwell in the Southern Ocean."

Coppola, now a postdoctoral researcher of soil science and biogeochemistry at the University of Zurich, said the surface of the ocean has more black carbon than the deep ocean because of river input and atmospheric deposition. "River transport is important because it's the source of recent black carbon to the oceans, mixed into the ancient pool that's persisted for tens of thousands of years."

She said the material in the deep ocean is as old as 23,000 years, suggesting that the variety delivered by rivers is not lingering in the sea.

"It may be that the stuff is being chomped down or degraded by a photo processes, where the sun penetrates several meters of the upper ocean, providing for the oxidation of black carbon," said Druffel. "Or maybe there's some place it hides. I don't think that's the case, though. I think it's more a sink, a mechanism for its destruction that we don't understand."
-end-
The research was funded by the National Science Foundation's Chemical Oceanography Program and Arctic Research Opportunities.

About the University of California, Irvine: Currently celebrating its 50th anniversary, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $4.8 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

University of California - Irvine

Related Carbon Articles:

The carbon dioxide loop
Marine biologists quantify the carbon consumption of bacterioplankton to better understand the ocean carbon cycle.
Transforming the carbon economy
A task force commissioned in 2016 by former US Secretary of Energy Ernest Moniz has proposed a framework for evaluating R&D on recycling carbon dioxide and removing large amounts of CO2 from the atmosphere.
Closing the carbon loop
Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published in the Royal Society of Chemistry journal Catalysis Science & Technology.
An overlooked source of carbon emissions
Nations that pledged to carry out the Paris climate agreement have moved forward to find practical ways to reduce greenhouse gas emissions, including efforts to ban hydrofluorocarbons and set stricter fuel-efficiency standards.
Enabling direct carbon capture
Researchers have developed a solid material that can capture carbon dioxide from the atmosphere, even at very low concentrations.
More Carbon News and Carbon Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...