Nav: Home

Study shows possible 'key' to improved therapy for adrenocortical carcinoma

May 09, 2016

A study comprised of 39 international institutions revealed significant new findings about adrenocortical carcinoma (ACC), a rare cancer with an often poor prognosis.

The study, which conducted a comprehensive "pan-genomic" assessment of ACC, was led by The University of Texas MD Anderson Cancer Center and the University of Michigan, Ann Arbor. Research results are published in the May 9 issue of Cancer Cell.

ACC is an aggressive cancer originating in the adrenal gland. The disease affects less than two people per million annually, and is seen more commonly in children under age 5 and adults ages 30-40. The overall five-year survival rate is 20 to 35 percent.

Scientists examined 91 ACC tumor specimens from four continents, and observed "massive" DNA loss followed by whole genome doubling (WGD). WGD occurs when tumor cells acquire an extra copy of their entire genome. The researchers found that WGD was associated with aggressive clinical course, suggesting that it could be a hallmark of disease progression. They speculate that tumor growth could be slowed if they could prohibit WGD in future pre-clinical studies.

"Our results represent the most complete characterization of ACC tissues and may indicate a key to successful targeted therapy for this disease," said Roeland Verhaak, Ph.D., associate professor of Bioinformatics and Computational Biology. "The study findings illustrate how molecular data, combined with traditional clinical assessment, might inform therapeutic decisions and lead to significant advances in patient outcomes."

In addition, the study identified three ACC subtypes with distinct clinical outcomes and molecular alterations, said Verhaak, paving the way for a more precise clinical stratification of patients based on molecular biomarkers.

The team also identified novel ACC "driver" genes, expanding their understanding about genes already thought to lead to tumor formation, as well as defining new molecular pathways.

"Our understanding of ACC pathogenesis is incomplete and new therapies are needed," said Verhaak. "While standard clinical assessments are informative for patient management, molecular information may be able to more precisely predict patient outcome and direct optimal care."

The study relied on cancer molecular data provided through The Cancer Genome Atlas (TCGA).
-end-
MD Anderson members of the study team included Siyuan Zheng, Ph.D., Genomic Medicine, Rehan Akbani, Ph.D., Bioinformatics and Computational Biology, and Mouhammed Habra, M.D., Endocrine Neoplasia and Hormonal Disorders.

U.S. institutions participating in the study included the Massachusetts Institute of Technology and Harvard University, and Harvard Medical School, Cambridge, Mass.; Baylor College of Medicine, Houston; University of North Carolina at Chapel Hill, N.C.; Johns Hopkins University; University of Michigan, Ann Arbor; Memorial Sloan-Kettering Cancer Center, New York; University of California, Santa Cruz; Dana-Farber Cancer Institute, Boston; Brown University, Providence, R.I.; Brigham and Women's Hospital, Boston; Translational Genomics Research Institute, Phoenix; Institute for Systems Biology, Seattle; the National Institutes of Health and National Cancer Institute, Bethesda, Md.; and Arizona State University, Tempe, Ariz. In addition, 16 international institutions also participated in the study.

The study was funded by the National Institutes of Health (5U24CA143799, 5U24CA143835, 5U24CA143840, 5U24CA143843, 5U24CA143845, 5U24CA143848, 5U24CA143858, 5U24CA143866, 5U24CA143867, 5U24CA143882, 5U24CA143883, 5U24CA144025, U54HG003067, U54HG003079, U54HG003273 and P30CA16672).

University of Texas M. D. Anderson Cancer Center

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
More Genes News and Genes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...