Nav: Home

HKU and Kyoto U reveal a new strategy to enhance the efficiency of cereal straw for biofuel production

May 09, 2017

Straw is commonly used for feeding animals, burning, baling, etc. As one of the "Three Canton Treasures", straw can actually be used as a raw material to produce biofuel.

Ethanol, an alcohol, is a clean and renewable biofuel traditionally produced by fermentation of sucrose from sugarcane or glucose released from corn starch. With an increasing demand on biofuel in recent years, cellulose from non-edible plant materials (e.g. sugarcane leaves, corn stalks, rice straw) has been used as raw materials for bioethanol production. However, since cellulose is crosslinked with lignin in plant cell walls, it is very difficult to release glucose from cellulose.

A collaborative research effort by the University of Hong Kong (HKU) and Kyoto University (Kyoto U) has revealed a new strategy to allow cellulose in rice straw to release its fermentable sugar more efficiently. The research breakthrough was recently published in a notable plant science journal Plant Physiology.

Lignin is a complex polymer which functions to provide mechanical strength and structural integrity in plants. However, expensive and complicated procedures are required to loosen the lignin barrier in order to utilize cellulose more efficiently during the production of bioethanol.

Rice and other cereals belong to the grass family (Poaceae). Lignin in their stems and leaves contain a special component called tricin. HKU plant biochemists Dr Clive Lo Sze-chung and his student Dr Lydia Lam Pui-ying, together with Kyoto U lignin specialist Dr Yuki Tobimatsu, started a collaborative project two years ago. According to their discovery, when flavone synthase II (FNSII), a key enzyme involved in tricin synthesis, is knocked out, not only is tricin not produced, but the lignin content in rice straw was also reduced by approximately one-third. In addition, the yield of glucose from cellulose degradation was increased by 37% without any chemical treatment.

Glucose released from cellulose can be used for bioethanol production. In other words, it is more efficient to produce ethanol from this kind of rice straw: the cost of lignin treatment can be reduced and the production of ethanol can be enhanced.

"This is the first demonstration of the reduction of cell wall lignin content in rice straw by the disruption of tricin production", said Clive Lo, "Importantly, there are no negative impacts on rice growth and productivity." As plants in the grass family all contain tricin-bound lignin, this strategy can be applied to other cereals like maize, wheat, and barley as well as grass species (e.g. sorghum and switchgrass) cultivated around the world exclusively for ethanol production, so that they can be utilized more efficiently as raw materials for biofuel.

Dr. Lydia Lam has been recently awarded the JSPS Postdoctoral Fellowship for Research in Japan by the Japan Society for the Promotion of Science and will start her postdoctoral research at Kyoto U this September. She said, "I feel very delighted and honored to conduct a research project that could benefit society. Also, as a Hongkonger, I am always trained to work quickly and efficiently. During the eight-month research experience at Kyoto U, I was particularly impressed by the students there. They performed experiments with extreme care and precision. When I am doing research today, I always ask myself to do better than perfect in addition to seeking speed and efficiency."
-end-
Link of the article in Plant Physiology: "Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility"

About the research team:

Dr Clive Lo is an Associate Professor in the School of Biological Sciences, the University of Hong Kong. His laboratory has been elucidating biosynthesis pathways of flavonoids in cereal crops for applications in metabolic engineering. His research projects are supported by the Research Grants Council of Hong Kong.

Dr Lydia Lam joined the Summer Science Institute during her secondary school years and was then inspired and determined to study Biotechnology. She was admitted to HKU in 2008 and received her Bachelor of Science (First Class Honours) Degree in Biotechnology. Afterwards, she was awarded the highly competitive Hong Kong PhD Fellowship and completed her PhD study in December 2016.

Previously Lo, Lam, and other lab members published two papers in Plant Physiology on tricin biosynthesis pathway in rice (DOIs: http://dx.doi.org/10.1104/pp.15.00566 and http://dx.doi.org/10.1104/pp.114.239723), providing important theoretical basis for the above investigation.

Dr Yuki Tobimatsu is an Associate Professor in the Laboratory of Metabolic Science of Forest Plants & Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Japan. His research areas include structure and formation of plant cell walls, lignin chemistry and biochemistry, and molecular breeding of biofuel crops.

The University of Hong Kong

Related Biofuel Articles:

Corn better used as food than biofuel, study finds
Corn is grown not only for food, it is also an important renewable energy source.
Researchers produce biofuel for conventional diesel engines
In accordance with an EU directive, conventional automotive diesel is supplemented with seven percent biodiesel.
Insight into enzyme's 3-D structure could cut biofuel costs
Using neutron crystallography, a Los Alamos research team has mapped the three-dimensional structure of a protein that breaks down polysaccharides, such as the fibrous cellulose of grasses and woody plants, a finding that could help bring down the cost of creating biofuels.
Turning chicken poop and weeds into biofuel
Chicken is a favorite, inexpensive meat across the globe. But the bird's popularity results in a lot of waste that can pollute soil and water.
Turning biofuel waste into wealth in a single step
Lignin is a bulky chain of molecules found in wood and is usually discarded during biofuel production.
Biofuel production technique could reduce cost, antibiotics use
A new technique from MIT gives biofuel-producing microbes the upper hand against unwanted invaders.
Biological wizardry ferments carbon monoxide into biofuel
Cornell University biological engineers have deciphered the cellular strategy to make the biofuel ethanol, using an anaerobic microbe feeding on carbon monoxide -- a common industrial waste gas.
Chemistry lessons from bacteria may improve biofuel production
A new UW-Madison analysis of a group of bacteria called Streptomyces reveals the way some strains of the microbe developed advanced abilities to tear up cellulose, and points out more efficient ways we might mimic those abilities to make fuel from otherwise unusable plant material.
Weed stems ripe for biofuel
A weedy plant found on the roadside in northern Australia has stems ripe for biofuel production.
Turning human waste into next generation biofuel
Researchers affiliated with Ulsan National Institute of Science and Technology have found a new way to convert human waste into renewable energy sources.

Related Biofuel Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...