Nav: Home

Closing the gate to mitochondria

May 09, 2017

Eukaryotic cells contain thousands of proteins, which are distributed to different cellular compartments with specific functions. A German-Swiss team of scientists led by Prof. Dr. Bettina Warscheid from the University of Freiburg and Prof. Dr. André Schneider from the University of Bern has developed the method "ImportOmics". This method enables the scientists to determine the localization of proteins that are imported via specific entry "gates" into distinct membrane-bound compartments, so-called organelles. Knowing the exact localization of individual proteins, the route they take to reach their destination, and the overall composition of cellular compartments is important for understanding fundamental mechanisms of cell biology. This is the prerequisite to understand disease mechanisms that rely on defective cellular functions. The scientists present their work in the current issue of the journal Nature Communications.

The research team developed the method to define the mitochondrial protein inventory of the single-cell parasite Trypanosoma brucei. The parasite contains a single mitochondrion, which is essential for growth and survival. The mitochondrion is surrounded by two membranes and houses more than thousand proteins. The exact protein composition, however, has not yet been established. The majority of these proteins are synthesized in the cellular fluid, the cytosol, and need to cross the outer membrane of the mitochondrion before they are sorted to their final destination. To this end, the outer membrane is equipped with a central gate, the so-called archaic translocase of the mitochondrial outer membrane (ATOM). The scientists exploited this gate to define the entirety of the mitochondrial proteins imported from the cytosol. They engineered cells to express reduced levels of ATOM40, the pore-forming component of the ATOM complex, thereby blocking the protein import into the mitochondrion.

The research team used quantitative mass spectrometry to compare the levels of proteins in mitochondria with defective and with undisturbed protein import. As a result, the scientists identified 1,120 proteins, including more than 300 proteins that, so far, had not been associated with the mitochondrion of the parasite. In addition, they showed that ImportOmics is applicable to systematically analyze different cellular protein import systems. This is exemplified for the import of proteins into the outer mitochondrial membrane and into the mitochondrial intermembrane space. Furthermore, scientists can use this method to analyze the composition of other organelles of the parasite as well as of other organisms.
-end-
Bettina Warscheid is head of the Department of Biochemistry and Functional Proteomics at the Institute of Biology II and member of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

Original publication:

Christian D. Peikert, Jan Mani, Marcel Morgenstern, Sandro Käser, Bettina Knapp, Christoph Wenger, Anke Harsman, Silke Oeljeklaus, André Schneider* and Bettina Warscheid* (2017): Charting Organellar Importomes by Quantitative Mass Spectrometry. Nature Communications. DOI: 10.1038/NCOMMS15272

(*These authors contributed equally.)

University of Freiburg

Related Mitochondria Articles:

Uncovering the presynaptic distribution and profile of mitochondria
In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.
Temple researchers identify new target regulating mitochondria during stress
Like an emergency response team that is called into action to save lives, stress response proteins in the heart are activated during a heart attack to help prevent cell death.
Runaway mitochondria cause telomere damage in cells
Targeted damage to mitochondria produces a 'Chernobyl effect' inside cells, pelting the nucleus with harmful reactive oxygen species and causing chromosomal damage.
Interplay between mitochondria and nucleus may have implications for new treatment
Mitochondria, the 'batteries' that produce our energy, interact with the cell's nucleus in subtle ways previously unseen in humans, according to research published today in the journal Science.
Dissolving protein traffic jam at the entrance of mitochondria
Researchers from Freiburg discovered a novel mechanism that ensures obstacle-free protein traffic into the powerhouse of the cell.
More Mitochondria News and Mitochondria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...