Nav: Home

Materials bend as they 'breathe' under high temperatures

May 09, 2017

CAMBRIDGE, Mass. -- Carrying out maintenance tasks inside a nuclear plant puts severe strains on equipment, due to extreme temperatures that are hard for components to endure without degrading. Now, researchers at MIT and elsewhere have come up with a radically new way to make actuators that could be used in such extremely hot environments.

The system relies on oxide materials similar to those used in many of today's rechargeable batteries, in that ions move in and out of the material during charging and discharging cycles. Whether the ions are lithium ions, in the case of lithium ion batteries, or oxygen ions, in the case of the oxide materials, their reversible motion causes the material to expand and contract.

Such expansion and contraction can be a major issue affecting the usable lifetime of a battery or fuel cell, as the repeated changes in volume can cause cracks to form, potentially leading to short-circuits or degraded performance. But for high-temperature actuators, these volume changes are a desired result rather than an unwelcome side effect.

The findings are described in a report appearing this week in the journal Nature Materials, by Jessica Swallow, an MIT graduate student; Krystyn Van Vliet, the Michael (1949) and Sonja Koerner Professor of Materials Science and Engineering; Harry Tuller, professor of materials science and engineering; and five others.

"The most interesting thing about these materials is that they function at temperatures above 500 degrees Celsius," Swallow explains. That suggests that their predictable bending motions could be harnessed, for example, for maintenance robotics inside a nuclear reactor, or actuators inside jet engines or spacecraft engines.

By coupling these oxide materials with other materials whose dimensions remain constant, it is possible to make actuators that bend when the oxide expands or contracts. This action is similar to the way bimetallic strips work in thermostats, where heating causes one metal to expand more than another that is bonded to it, leading the bonded strip to bend. For these tests, the researchers used a compound dubbed PCO, for praseodymium-doped cerium oxide.

Conventional materials used to create motion by applying electricity, such as piezoelectric devices, don't work nearly as well at such high temperatures, so the new system could open up a new area of high-temperature sensors and actuators. Such devices could be used, for example, to open and close valves in these hot environments, the researchers say.

Van Vliet says the finding was made possible as a result of a high-resolution, probe-based mechanical measurement system for high-temperature conditions that she and her co-workers have developed over the years. The system provides "precision measurements of material motion that here relate directly to oxygen levels," she says, enabling researchers to measure exactly how the oxygen is cycling in and out of the metal oxide.

To make these measurements, scientists begin by depositing a thin layer of metal oxide on a substrate, then use the detection system, which can measure small displacements on a scale of nanometers, or billionths of a meter. "These materials are special," she says, "because they 'breathe' oxygen in and out, and change volume, and that causes the substrate to bend."

While they demonstrated the process using one particular oxide compound, the researchers say the findings could apply broadly to a variety of oxide materials, and even to other kinds of ions in addition to oxygen, moving in and out of the oxide layer.
-end-
The research was supported by the U.S. Department of Energy's Office of Basic Energy Science Small Research Grants Program and used shared facilities provided by the National Science Foundation's MRSEC Program.

ADDITIONAL BACKGROUND:

ARCHIVE: Toward all-solid lithium batteries

http://news.mit.edu/2017/toward-solid-lithium-batteries-0202

ARCHIVE: Analyzing lithium ion battery fatigue

http://news.mit.edu/2016/erica-eggleton-analyzing-lithium-ion-battery-fatigue-0802

Massachusetts Institute of Technology

Related Ions Articles:

Synthetic nanochannels for iodide transport
Iodide channels have the potential to treat thyroid diseases and some types of cancers.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Fluctuation in the concentration of calcium ions contributes to brain shape
The first step in shaping the brain is that the neural plate, a sheet-like cell layer, curves to form the neural tube.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
Mobile gold fingers
Drugs containing gold have been used for centuries to treat conditions like rheumatoid arthritis.
New hydronium-ion battery presents opportunity for more sustainable energy storage
A new type of battery shows promise for sustainable, high-power energy storage.It's the world's first battery to use only hydronium ions as the charge carrier.
Clarifying the behaviors of negative hydrogen ions
The National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) has succeeded in revealing the flow of negative hydrogen ions using a combination of infrared lasers and electrostatic probes in the ion-source plasma, which generates a negative-hydrogen-ion beam.
The promise of greener power generation
The characterization of compounds produced in combustion could lead to cleaner, more efficient power stations.
A new record at BESSY II: 10 million ions cooled for the first time to 7.4 K
Magnetic ground states spectroscopically ascertained An international team from Sweden, Japan, and Germany has set a new temperature record for what are known as quadrupole ion traps that capture electrically charged molecular ions.
A new way of taming ions can improve future health care
A group of researchers at Chalmers University of Technology has discovered a completely new way of using lasers to accelerate ion beams.

Related Ions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...