Nav: Home

Achieving near-perfect optical isolation using opto-mechanical transparency

May 09, 2017

Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. "Low-loss optical isolators are critical components for signal routing and protection, but their chip-scale integration into photonic circuits is not yet practical. Isolators act as optical diodes by allowing light to pass through one way while blocking it in the opposite direction," explained Gaurav Bahl, an assistant professor of mechanical science and engineering at Illinois. "In this study, we demonstrated that complete optical isolation can be obtained within any dielectric waveguide using a very simple approach, and without the use of magnets or magnetic materials."

The key characteristics of ideal optical isolators are that they should permit light with zero loss one way, while absorbing light perfectly in the opposite direction, i.e. the condition of 'complete' isolation. Ideal isolators should also have a wide bandwidth and must be linear, i.e. the optical signal wavelength does not change through the device and the properties are independent of signal strength. The best method, to date, for achieving isolation with these characteristics has been through the magneto-optic Faraday rotation effect occurring in special gyrotropic materials, e.g. garnet crystals. Unfortunately, this technique has proven challenging to implement in chip-scale photonics due to fabrication complexity, difculty in locally confining magnetic fields, and significant material losses. In light of this challenge, several non-magnetic alternatives for breaking reciprocity have been explored both theoretically and experimentally.

In a previous study, Bahl's research team experimentally demonstrated, for the first time, the phenomenon of Brillouin Scattering Induced Transparency (BSIT), in which light-sound coupling can be used to slow down, speed up, and block light in an optical waveguide.

"The most significant aspect of that discovery is the observation that BSIT is a non-reciprocal phenomenon -- the transparency is only generated one way. In the other direction, the system still absorbs light," Bahl said. "This non-reciprocal behavior can be exploited to build isolators and circulators that are indispensable tools in an optical designer's toolkit."

"In this work, we experimentally demonstrate complete linear optical isolation in a waveguide-resonator system composed entirely of silica glass, by pushing the BSIT interaction into the strong coupling regime, and probing optical transmission through the waveguide in the forward and backward directions simultaneously," stated JunHwan Kim, a graduate student and first author of the paper, "Complete linear optical isolation at the microscale with ultralow loss," appearing in Scientific Reports.

"Experimentally, we have demonstrated a linear isolator capable of generating a record-breaking 78.6 dB of contrast for only 1 dB of forward insertion loss within the isolation band," J. Kim added. "This means that light propagating backwards is nearly 100-million times more strongly suppressed than light in the forward direction. We also demonstrate the dynamic optical recon?gurability of the isolation direction."

"Currently the effect has been demonstrated in a narrow bandwidth. In the future, wider bandwidth isolation may also be approached if the waveguide and resonator are integrated on-chip, since remaining mechanical issues can be eliminated and the interacting modes can be designed precisely, " Bahl said. "Achieving complete linear optical isolation through opto-mechanical interactions like BSIT that occur in all media, irrespective of crystallinity or amorphicity, material band structure, magnetic bias, or presence of gain, ensures that the technique could be implemented with nearly any optical material in nearly any commercial photonics foundry."

Since it avoids magnetic fields or radiofrequency driving fields, this approach is particularly attractive for chip-scale cold atom microsystems technologies, for both isolation and shuttering of optical signals, and on-chip laser protection without loss.
-end-
In addition to J. Kim and Bahl, graduate student Seunghwi Kim is a co-first author of the study. Funding for this research was provided through the DARPA Cold Atom Microsystems program and the Air Force Office for Scientific Research Young Investigator program.

University of Illinois College of Engineering

Related Light Articles:

Analysis sheds light on how metaphors like 'sheds light' evolved
In the first large-scale study of its kind, researchers from Lehigh University and University of California, Berkeley analyzed 5,000 English-language metaphorical mapping records over the last 1100 years and found the evolution of word meaning to be highly systematic -- following predictable patterns.
A stream of superfluid light
Scientists have known for centuries that light is composed of waves.
No green light for latest traffic light app following expert evaluation
Psychologist Dr Kyle Wilson takes a 'human look' at a new vehicle traffic light app ahead of plans to introduce similar devices into 'connected vehicles'
Let there be light
Graphene Flagship research demonstrates large scale, fully integrable arrays of single photon quantum dots in layered materials, which may lead to hybrid on-chip photonics devices for networks and sensing.
Guiding light
Biologists discover an unexpected role for a light-sensitive receptor protein in the central brain that regulates circadian rhythms.
Red light, green light invention prevents work interruptions
A UBC computer scientist has invented a unique desk light that automatically switches from green to red when you are 'in the zone' and shouldn't be disturbed by colleagues.
Shedding light on the absorption of light by titanium dioxide
EPFL scientists have uncovered the hidden properties of titanium dioxide, one of the most promising materials for light-conversion technology.
A nano-roundabout for light
At TU Wien, it was possible to create a nanoscale optical element that regulates the flow of light particles at the intersection of two glass fibers like a roundabout.
Discovery: A new form of light
Scientists have discovered a new method to create fluorescent light that may have promising applications from LEDs to medical imaging.
How to control polarization of light
A group of physicists from the Lomonosov Moscow State University and Toyohashi University of Technology (Japan) has developed a method of ultrafast control of the light's polarization.

Related Light Reading:

All the Light We Cannot See: A Novel
by Anthony Doerr (Author)

Light: The Visible Spectrum and Beyond
by Megan Watzke (Author), Kimberly Arcand (Author)

Light (Gone)
by Michael Grant (Author)

Light: Shadows, Mirrors, and Rainbows (Amazing Science)
by Natalie M. Rosinsky (Author), Sheree Boyd (Illustrator)

Konosuba: God's Blessing on This Wonderful World!, Vol. 6 (light novel): Princess of the Six Flowers (Konosuba (light novel))
by Natsume Akatsuki (Author)

On a Beam of Light: A Story of Albert Einstein
by Jennifer Berne (Author), Vladimir Radunsky (Illustrator)

The Light We Lost
by Jill Santopolo (Author)

A Light So Lovely: The Spiritual Legacy of Madeleine L'Engle, Author of A Wrinkle in Time
by Sarah Arthur (Author), Charlotte Jones Voiklis (Foreword)

The Light Within Me: An Inspirational Memoir
by Ainsley Earhardt (Author)

A Conjuring of Light: A Novel (Shades of Magic)
by V. E. Schwab (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...