Nav: Home

Human MAIT cells sense the metabolic state of enteric bacteria

May 09, 2018

A little-explored group of immune cells plays an important role in the regulation of intestinal bacteria. Changing metabolic states of the microbes have an effect on defense cells at different stages of alert or rest, as researchers from the Department of Biomedicine at the University and University Hospital of Basel report in the journal Mucosal Immunology.

It is known that the metabolites of bacteria influence the composition and function of immune cells resident within the gut. These defense cells include MAIT cells (mucosal-associated invariant T cells), which were only recently discovered and are naturally abundant in the gastrointestinal mucosa, skin liver and blood. These cells are specialized in recognizing the microorganisms living in every human being and monitoring their activities.

Different populations in gut vs. blood

A group led by Prof. Dr. Gennaro De Libero from the University of Basel and PD Dr. Petr Hruz from the University Hospital of Basel have investigated how MAIT cell activation and function is influenced by bacterial metabolites produced in normal colon. The study revealed that distinct populations of MAIT cells are located in the human intestinal mucosa. These populations were identified in gut biopsies using highly innovative methods and bioinformatics analyses.

Result: MAIT cells are present in variable states of alert and rest, in accordance with the metabolic state of intestinal bacterial flora. The defense cells are most frequently stimulated by bacteria grown under low-oxygen and slow growth-phase - conditions such as those found in the large intestine. MAIT cells can then directly influence local inflammation but also tissue healing and cell fitness in the gut by producing different messenger substances.

"Fine balance"

"Our results show that there is a fine balance occurring in the gut between microbial growth conditions, the production of stimulating metabolites and the response of MAIT defense cells," state the researchers. The metabolism of microbes in the intestine constantly adapts to changing host conditions. By detecting the metabolic state of enteric bacteria, MAIT cells can potentiate their function in mucosal immunosurveillance.
-end-


University of Basel

Related Microbes Articles:

Microbes seen controlling action of host's genes
Duke researchers have shown that microbes can control their animal hosts by manipulating the molecular machinery of their cells, triggering patterns of gene expression that consequently contribute to health and disease.
Three-way dance between herbivores, plants and microbes unveiled
What looks like a caterpillar chewing on a leaf or a beetle consuming fruit is likely a three-way battle that benefits most, if not all of the players involved, according to a Penn State entomologist.
Vitamin B12: Power broker to the microbes
In the microbial world, vitamin B12 is a hot commodity.
Gut microbes and bird's breath from the U at #SICB2017
University of Utah researchers will be among the scientists convening in New Orleans for the 2017 Annual Meeting for the Society for Integrative and Comparative Biology Jan.
Gut microbes contribute to recurrent 'yo-yo' obesity
New research in mice may in the future help dieters keep the weight off.
Digital microbes for munching yourself healthy
A research team at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg has taken an important step in modelling the complexity of the human gut's bacterial communities -- the microbiome -- on the computer.
How gut microbes help chemotherapy drugs
Two bacterial species that inhabit the human gut activate immune cells to boost the effectiveness of a commonly prescribed anticancer drug, researchers report Oct.
Soil microbes flourish with reduced tillage
Microbes improve soil quality by cycling nutrients and breaking plant residues down into soil organic matter.
Microbes help plants survive in severe drought
Plants can better tolerate drought and other stressors with the help of natural microbes, University of Washington research has found.
Mix and match microbes to make probiotics last
Scientists have tried to alter the human gut microbiota to improve health by introducing beneficial probiotic bacteria.

Related Microbes Reading:

I Contain Multitudes: The Microbes Within Us and a Grander View of Life
by Ed Yong (Author)

Teaming with Microbes: The Organic Gardener's Guide to the Soil Food Web, Revised Edition
by Jeff Lowenfels (Author), Wayne Lewis (Author)

Tiny Creatures: The World of Microbes (Read and Wonder (Paperback))
by Nicola Davies (Author), Emily Sutton (Illustrator)

Microbe
by Michele Swanson (Author), Gemma Reguera (Author), Moselio Schaechter (Author), Frederick C. Neidhardt (Author)

Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues
by Martin J. Blaser MD (Author)

10% Human: How Your Body's Microbes Hold the Key to Health and Happiness
by Alanna Collen (Author)

Microbe Hunters
by Paul de Kruif (Author)

Microbes: Discover an Unseen World (Build It Yourself)
by Christine Burillo-Kirch (Author), Tom Casteel (Illustrator)

Inside Your Insides: A Guide to the Microbes That Call You Home
by Claire Eamer (Author), Marie-Eve Tremblay (Illustrator)

Planet of Microbes: The Perils and Potential of Earth's Essential Life Forms
by Ted Anton (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...