Battery-free 'smart' toys move closer to commercial reality (video)

May 09, 2018

Rubber duckies could soon be at the forefront of an electronic revolution. In ACS Sustainable Chemistry & Engineering, scientists report they have used specialized nanogenerators that gather energy from mechanical vibrations to transform squeaky bathtub companions and other conventional children's toys into 'smart' electronics. They say the finding could have broad commercial applications, leading to the development of battery-free, self-powered toys, medical sensors and other devices. Watch a video of prototype toys here.

By age 4, virtually every child has had contact with an electronic toy or mobile device, according to the American Academy of Pediatrics. Keeping these devices blinking and beeping is tedious, often requiring frequent charging or battery changes. Researchers have explored alternative ways to produce and store energy for these devices without using batteries. One promising approach involves the use of triboelectric nanogenerators, or TENGs. TENGs gather electrical charges from friction, similar to the static that builds up on a balloon when it is rubbed against someone's head. TENGs amplify and convert this biomechanical energy into a usable form. However, ramping up these devices for commercial applications has been challenging, possibly because of low energy storage and conversion efficiencies. To address some of these issues, Sang-Jae Kim and colleagues at Jeju National University in South Korea sought to more effectively harness the energy from TENGs and use it to transform traditional toys into commercially viable, self-powered 'smart' toys.

The researchers designed and incorporated TENGs -- made with aluminum electrodes and an eco-friendly silicone-like film between them -- into rubber ducks and clapping toys. Squeezing or shaking the toys alternatively separated and brought the electrodes into contact with film, creating an electrical charge. Once activated, the TENGs harvested enough biomechanical energy to illuminate several LED lights attached to each toy. The TENGs were durable, suggesting they could operate for substantial periods. The researchers conclude their unique approach can transform traditional toys into battery-free interactive ones, and raises the prospect of successfully using TENGs commercially in other "smart" gadgets including medical devices and wearable electronics.
-end-
The authors acknowledge funding from the Basic Science Research Program through the National Research Foundation of Korea.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Electronics Articles from Brightsurf:

Artificial materials for more efficient electronics
The discovery by a team of the University of Geneva of an unprecedented physical effect in a new artificial material marks a significant milestone in the lengthy process of developing ''made-to-order'' materials and more energy-efficient electronics.

The new tattoo: Drawing electronics on skin
One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin.

Lighting the way to porous electronics and sensors
Researchers from Osaka University have created porous titanium dioxide ceramic thin films, at high temperatures and room temperature.

The ink of the future in printed electronics
A research group led by Simone Fabiano at the Laboratory of Organic Electronics, Linköping University, has created an organic material with superb conductivity that doesn't need to be doped.

Integrating electronics onto physical prototypes
MIT researchers have invented a way to integrate 'breadboards' -- flat platforms widely used for electronics prototyping -- directly onto physical products.

Something from nothing: Using waste heat to power electronics
Researchers from the University of Tsukuba developed an improved thermocell design to convert heat into electricity.

Electronics at the speed of light
A European team of researchers including physicists from the University of Konstanz has found a way of transporting electrons at times below the femtosecond range by manipulating them with light.

Electronics integrated to the muscle via 'Kirigami'
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed a donut-shaped kirigami device for electromyography (EMG) recordings.

Creating 2D heterostructures for future electronics
New research integrates nanomaterials into heterostructures, an important step toward creating nanoelectronics.

Researchers report a new way to produce curvy electronics
Contact lenses that can monitor your health as well as correct your eyesight aren't science fiction, but an efficient manufacturing method has remained elusive.

Read More: Electronics News and Electronics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.