For how long will the USA remain the Nobel Prize leader?

May 09, 2018

FRANKFURT. Since first being awarded in 1901, most Nobel Prizes for science have gone to the USA, the United Kingdom, Germany and France. An empirical study by Professor Claudius Gros from the Institute for Theoretical Physics at the Goethe University in Frankfurt has now shown that the Nobel Prize productivity in these countries is primarily determined by two factors: a long-term success rate, and periods during which each country has been able to win an especially large number of Nobel Prizes.

For the study, Nobel Prizes for physics, chemistry and medicine were assigned proportionately, since up to three scientists can share the prize. The success rates were calculated on the basis of population figures. For France and Germany, the periods of increased scientific creativity occurred around 1900, whereas for the USA it occurred in the second half of the 20th century.

"The US era is approaching its end," states Claudius Gros. "Since its zenith in the 1970s, US Nobel Prize productivity has already declined by a factor of 2.4." According to his calculations, a further decline is foreseeable. "Our model predicts that starting in 2025 the productivity of the USA will be below that of Germany, and from 2028, below that of France as well."

With a nearly constant, very high success rate per capita, Great Britain occupies a special position with regard to Nobel Prizes. It remains uncertain, however, whether Great Britain will be able to maintain this success, especially in view of the increasing industrialization of research.

"National research advancement can undoubtedly also be successful independent of Nobel Prize productivity," Claudius Gros stresses. "Especially because new areas of research such as the computer sciences - a typical US domain - are not included." It therefore remains open whether the decline in Nobel Prize productivity is cause for concern, or merely an expression of a new orientation toward more promising research fields.
-end-
A chart to download can be found at: http://www.uni-frankfurt.de/71881831
Chart: Claudius Gros, Goethe University

Publication:

Claudius Gros: An empirical study of the per capita yield of science Nobel Prizes: Is the US era coming to an end?, in: Royal Society Open Science (2018) http://rsos.royalsocietypublishing.org/content/5/5/180167

Claudius Gros: Pushing the complexity barrier: diminishing returns in the sciences, in: Complex Systems 21, 183 (2012). https://arxiv.org/abs/1209.2725

Further information: Prof. Claudius Gros, Department for Theoretical Physics, Faculty of Physics, Riedberg Campus, Tel.:+49(0)69 798-47818, gros07@itp.uni-frankfurt.de.

Current news about science, teaching, and society in GOETHE-UNI online (http://www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities. Together with the Technical University of Darmstadt and the University of Mainz, it acts as a partner of the inter-state strategic Rhine-Main University Alliance. Internet: http://www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anke Sauter, Science Editor, International Communication, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: +49(0)69 798-13066, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de.

Publisher: The President of Goethe University Editor: Dr. Anne Hardy, Referee for Science Communication, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-13035, Fax: (069) 798-763 12531.

Goethe University Frankfurt

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.