New polymer manufacturing process saves 10 orders of magnitude of energy

May 09, 2018

CHAMPAIGN, Ill. -- Makers of cars, planes, buses - anything that needs strong, lightweight and heat resistant parts - are poised to benefit from a new manufacturing process that requires only a quick touch from a small heat source to send a cascading hardening wave through a polymer. Researchers at the University of Illinois have developed a new polymer-curing process that could reduce the cost, time and energy needed, compared with the current manufacturing process.

The findings, reported in Nature, state that the new polymerization process uses 10 orders of magnitude less energy and can cut two orders of magnitudes of time over the current manufacturing process. "This development marks what could be the first major advancement to the high-performance polymer and composite manufacturing industry in almost half a century," said aerospace engineering professor and lead author Scott White.

"The materials used to create aircraft and automobiles have excellent thermal and mechanical performance, but the fabrication process is costly in terms of time, energy and environmental impact," White said. "One of our goals is to decrease expense and increase production."

Take, for example, aircraft assembly. For one major U.S. producer, the process of curing just one section of a large commercial airliner can consume over 96,000 kilowatt-hours of energy and produce more than 80 tons of CO2, depending on the energy source, White said. That is roughly the amount of electricity it takes to supply nine average homes for one year, according to the U.S. Energy Information Administration.

"The airliner manufacturers use a curing oven that is about 60 feet in diameter and about 40 feet long - it is an incredibly massive structure filled with heating elements, fans, cooling pipes and all sorts of other complex machinery," White said. "The temperature is raised to about 350 degrees Fahrenheit in a series of very precise steps over a roughly 24-hour cycle. It is an incredibly energy-intensive process."

The team is part of the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign and includes White, chemistry professor and Beckman Institute director Jeffrey Moore, aerospace engineering professor and department head Philippe Geubelle, and materials science and engineering professor Nancy Sottos. They proposed that they could control chemical reactivity to economize the polymer-curing process. "There is plenty of energy stored in the resin's chemical bonds to fuel the process," Moore said. "Learning to unleash this energy at just the right rate - not too fast, but not too slow - was key to the discovery."

"By touching what is essentially a soldering iron to one corner of the polymer surface, we can start a cascading chemical-reaction wave that propagates throughout the material," White said. "Once triggered, the reaction uses enthalpy, or the internal energy of the polymerization reaction, to push the reaction forward and cure the material, rather than an external energy source."

"You can save energy and time, but that does not matter if the quality of the final product is substandard," Sottos said. "We can increase the speed of manufacturing by triggering the hardening reaction from more than one point, but that needs to be very carefully controlled. Otherwise, the meeting spot of the two reaction waves could form a thermal spike, causing imperfections that could degrade the material over time."

The team has demonstrated that this reaction can produce safe, high-quality polymers in a well-controlled laboratory environment. They envision the process accommodating large-scale production due to its compatibility with commonly used fabrication techniques like molding, imprinting, 3-D printing and resin infusion.
-end-
Editor's notes:

To reach Scott White, call 217-333-1077; swhite@illinois.edu.

The paper "Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization" is available online and from the U. of I. News Bureau.

University of Illinois at Urbana-Champaign

Related Polymer Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.

Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.

Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.

Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.

New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.

New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.

New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.

Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.

Read More: Polymer News and Polymer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.