Nav: Home

Step aside Superman, steel is no competition for this new material

May 09, 2018

When it comes to materials, there is no question as to who wins the strongman competition. Spider silk is known as being the strongest fabric, and steel, ceramics and glass fibers are the best building materials. But now, researchers are reporting in ACS Nano that specially arranged nano-sized cellulose fibers are the strongest material of them all, in a move that might cause some to re-name Superman the "man of cellulose."

Although technology has rapidly advanced, researchers are still playing catch-up with nature. Recently, scientists have been trying to mimic the architecture of natural materials on the nanoscale level with the hopes that it would translate to larger-scale strength. For example, a strong, stiff cell wall layer in wood is made up of cellulose nanofibrils (CNFs), and the organization of this material has served as inspiration for the creation of strong, macroscale substances. But poor adhesion and un-aligned components have prevented researchers from realizing this goal. So, Daniel S?derberg and colleagues sought to overcome these limitations.

The team used flow-assisted assembly to organize CNFs into a near-perfect alignment within macroscale fibers. Even the weakest fiber they made with the method was stronger than other CNF fibers previously reported. Most importantly, the macroscale fibers were stronger than metal, alloys and glass fibers. And they are both stronger and eight times stiffer than dragline spider silk, which is the gold standard for lightweight biopolymers, at the same specific strength. The researchers say that the material could be useful in many load-bearing applications, such as light-weight bio-based composites for cars and bikes, as well as high-performance medical implants.
-end-
The authors acknowledge funding from the Knut and Alice Wallenberg Foundation through the Wallenberg Wood Science Center at KTH Royal Institute of Technology.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Spider Silk Articles:

Dynamics of silk proteins are key to outstanding stability of spider silk as biomaterial
Scientists from the universities of Mainz and Würzburg in Germany discovered that methionine is highly abundant in some spider silk proteins.
New silk materials can wrinkle into detailed patterns, then unwrinkle to be 'reprinted'
Tufts engineers have developed silk materials that can wrinkle into highly detailed patterns -- including words, textures and images as intricate as a QR code or a fingerprint.
Spider silk: A malleable protein provides reinforcement
Scientists from the University of Würzburg have discovered that spider silk contains an exceptional protein.
Combination of wood fibers and spider silk could rival plastic
Combination of wood fibres and spider silk could rival plastic The unique material outperforms most of today's synthetic and natural materials by providing high strength and stiffness, combined with increased toughness
Spider silk could be used as robotic muscle
Researchers at MIT and other universities have found that spider silk produces a strong twisting motion when exposed to humidity, and may be usable for future artificial muscles or actuators.
Successful bladder repair using silk fibroid scaffolds
A team of researchers developed a novel model of partial bladder outlet obstruction in female swine and used this model to show that even after inducing severe urinary outlet resistance and damage to the bladder, they could achieve significant improvements in bladder capacity through bladder reconstruction using acellular bi-layer silk fibroin grafts.
Molecular insights into spider silk
Spider silk belongs to the toughest fibres in nature and has astounding properties.
Making a transparent flexible material of silk and nanotubes
The research from the University of Pittsburgh's Swanson School of Engineering finds that silk combined with carbon nanotubes may lead to a new generation of biomedical devices and so-called transient, biodegradable electronics.
ASU team unravels key mysteries of spider silk
Scientists at ASU are celebrating their recent success on the path to understanding what makes the fiber that spiders spin -- weight for weight -- at least five times as strong as steel.
Bigger proteins, stronger threads: Synthetic spider silk
Scientists in the School of Engineering & Applied Science at Washington University in St.
More Spider Silk News and Spider Silk Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.