Nav: Home

Peering into the past, scientists discover bacteria transformed a viral threat to survive

May 09, 2019

Researchers at Indiana University are reporting a previously unknown way that bacteria can develop new genes to evolve and adapt to threats, an insight that might advance efforts against "superbugs."

The study, published today online in the journal Current Biology, describes the first known evidence of bacteria stealing genetic material from their own worst enemy, called "phages," and transforming it to survive. Phages are bacterial viruses so lethal that they're estimated to kill about half of the bacteria in the world's oceans every two days.

"Just like we've got this ongoing war against bacteria, bacteria are fighting a constant war against bacteriophages, or 'phages,'" said the study's lead author, Amelia Randich, a postdoctoral researcher in the IU Bloomington College of Arts and Sciences' Department of Biology. "Our work found that a gene once used by phages as a weapon against bacteria is now used by bacteria to grow and divide correctly."

Watch a video of bacteria-killing phases in action

The gene is SpmX, commonly known as "Spam X." Knowledge about this gene has been pioneered by scientists in the lab of Yves Brun, IU Distinguished Professor of Biology, who is the senior author on the study. Randich is a member of Brun's lab at IU.

"This study shows bacteria's ability to transform an implement of war into a tool to create life," Randich added. "It's like watching evolution beat a sword into plowshare."

The work advances knowledge about how bacteria create new genes from external genetic material. In this case, a transformation that likely occurred a billion years ago could help people today gain greater control over bacteria.

This control could translate into new antibiotics, or other advances in the use of bacteria. For example, drug makers commonly use bacteria to produce biological compounds such as insulin. Research is also being conducted on the use of bacteria to recycle plastics or conduct electricity.

Like human viruses, bacteriophages inject their own genetic material into cells, hijacking their victims' molecular machinery to copy their own genes, producing new virus particles that break open and kill the cells. This process is called lysis, and the toxic enzymes that produce cell death are called lysins.

SpmX is found in Caulobacterales, a bacterial order whose members grow long appendages called stalks. It appears at the location in the bacteria's cell where the stalk will grow and "recruits" proteins that play roles in growing the stalk.

Based upon their analyses -- which included using bioinformatics to compare bacterial and phage genes and using X-ray crystallography to create 3D models of SpmX and related protein structures in phages -- IU researchers identified similarities between SpmX and lysin-producing protein sequences in bacteriophage. Specifically, the analysis found that the part of the gene used by SpmX to find the right place to grow stalks in Caulobacterales is related to the toxic lysins used by phages to break cells.

Moreover, the team found that the gene had changed, but only slightly. The amino acids located in a specific region of the enzyme that phage use to break cell walls had lost their ability to crack open cells in Caulobacter. Instead, they appeared to help guide SpmX to the future position of the stalk.

"Even though it was very, very similar to phage genes, we found a specific mutation in Caulobacter -- in the area of the protein used to cut through the bacterial cell wall -- that reduced its efficiency," Brun said.

"Because the sequence was so closely related to the genes in phage, you would expect it to have the same function: to cut the cell wall," he added. "But instead its activity was reduced to the point where it no longer killed the bacteria. It's quite remarkable."
-end-
Other authors on the paper are David T. Kysela of IU and Cécile Morlot of the University of Grenoble in France. This work was supported in part by the National Institutes of Health, the U.S. Fulbright Scholar Program and the European Research Infrastructure Consortium.

Indiana University

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.