Nav: Home

Personalized 'Eye-in-a-Dish' models reveal genetic underpinnings of macular degeneration

May 09, 2019

Age-related macular degeneration (AMD) is one of the most common causes of vision loss in people over age 65. The exact cause is unknown, but the fact that a family history of AMD increases a person's risk for the condition suggests genetics play an important role. Using stem cells derived from six people, University of California San Diego School of Medicine researchers recapitulated retinal cells in the lab. This "eye-in-a-dish" model allowed them to look for genetic variants that might contribute to AMD.

The study, published May 9, 2019 by Stem Cell Reports, revealed the importance of a specific genetic variation that affects expression of the VEGFA gene. The product of this gene, the VEGFA protein, is known for supporting new blood vessel growth -- a process that goes awry in AMD. Using this new model of AMD, the researchers determined that a specific genetic variation in a region of the genome that regulates expression of the VEGFA gene reduces the amount of VEGFA produced and directly contributes to AMD.

"We didn't start with the VEGFA gene when we went looking for genetic causes of AMD," said senior author Kelly A. Frazer, PhD, professor of pediatrics and director of the Institute for Genomic Medicine at UC San Diego School of Medicine. "But we were surprised to find that, with samples from just six people, this genetic variation clearly emerged as a causal factor." Frazer led the study with co-first authors Erin N. Smith, PhD, and Agnieszka D'Antonio-Chronowska, PhD, both scientists in her lab.

AMD involves the slow breakdown of cells that make up the macula, which is part of the retina, a region in the back of the eye that sends information to the brain. The most common treatment for AMD is injections of a drug that inhibits VEGF. This therapy blocks the formation of new blood vessels and leakage from abnormal vessels.

"Since current AMD therapies work by inhibiting VEGF, we knew VEGF was involved in AMD," D'Antonio-Chronowska said. "But we were surprised that the causal variant results in decreased VEGFA expression prior to AMD onset, and this finding could potentially be relevant for the treatment of AMD using anti-VEGF therapeutics."

The "eye-in-a-dish" model was generated from induced pluripotent stem cells (iPSCs). Researchers first obtained skin samples from participants, then converted skin cells into iPSCs as an intermediary. Like all stem cells, iPSCs can both self-renew, making more iPSCs, and differentiate into a specialized cell type. With the right cocktail of molecules and growth factors, the researchers specifically coaxed iPSCs into becoming retinal cells. The resulting "eye-in-a-dish" model took on physiological and molecular characteristics similar to native retinal cells, including a polygonal shape and pigmentation.

Next, the team collected molecular data, including RNA transcripts and epigenetic information, from the retinal models. They integrated this new data with complementary published data from 18 adults with and without AMD. The genetic variant most closely associated with AMD was rs943080, a specific genetic variation that affects expression of the VEGFA gene by altering activity of a distant region of the genome. Five of the six participants had one copy of rs943080 and one person had two copies of the gene variant.

The team made all of their data publicly available, giving researchers around the world the opportunity to further study the molecular features of these iPSC-derived retinal cells. They plan to develop this retinal model for more people, and use it to investigate other genes involved in AMD.
-end-
Co-authors of the study include: William W. Greenwald, Victor Borja, Hiroko Matsui, Paola Benaglio, Matteo D'Antonio, Radha Ayyagari, all at UC San Diego; Lana R. Aguiar, UC San Diego and Universidade Católica de Brasília; Robert Pogue, Universidade Católica de Brasília; Shyamanga Borooah, UC San Diego and University of Edinburgh.

University of California - San Diego

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.