Nav: Home

Illinois researcher Amy LaViers introduces novel perspective in robotic capability

May 09, 2019

University of Illinois researcher Amy LaViers has introduced a new point of view from which to observe robotic capabilities in her paper, "Counts of Mechanical, External Configurations Compared to Computational, Internal Configurations in Natural and Artificial Systems," published today in PLOS ONE, a leading interdisciplinary research journal.

LaViers leads the Robotics, Automation, and Dance (RAD) Lab, which specializes in the development of expressive robotic systems. Typically, robots aim to replicate some form of natural motion or action. In industry settings such as manufacturing or warehouse inventory, robots are typically far better performing with higher accuracy, precision, and lower cost over time. In more dynamic situations however, natural systems are more likely to outperform a robot. The performance of controlled tasks, for example, much of what is seen in a warehouse, can be easily quantified, but when it comes to the more complex situations there hasn't been a good way to do so. LaViers' paper introduces a simplified counting model that gives numerical perspective to compare the expressive capabilities of robots and natural beings. This is a topic that is explored in the RAD Lab through interdisciplinary collaboration with artists and somatic practice.

In computing there are many variables that go into the power of a device, but a common way of modeling it uses the number of transistors that device has. Over time, the number of transistors has increased and so has the computing power, a trend that is often referred to as Moore's Law. A parallel can be drawn to natural systems between transistors being "on" and "off" and a simplified model of neurons: "firing" and "not firing." Such a transistor count gives a static bottleneck for computational capacity of computers, ignoring dynamic aspects of processor speed, for example. LaViers noticed that a similar count of static external configurations of robots could reveal trends in robotic capacity. Moreover, she linked computation and mechanization in a robot to internal and external state changes, respectively, in a natural organism. After making these comparisons, LaViers can directly compare how expressive robots are to natural organisms as shown in the plot below.

Her paper focuses on two models of a microscopic worm (C. Elegans) and several partial organism analyses as well as analysis of a variety of well-known modern robots. A graph of LaViers' findings show that, using her method, the robots perform mostly between the two models of the worm for how expressive they are. That is, an apt natural correlate for the expressivity of extant robotic systems may be this tiny worm. The comparisons are not perfect, but they provide a simplification of a complex problem in order to understand the bigger picture - how much progress can be made in the realm of robotics in dynamic situations.

In the field of robotics, the advantages of nature sometimes get overlooked. LaViers' work contextualizes the progress made by roboticists over the years. Robots have become far more advanced, but when it comes to true imitation of nature there is still much to do. The groundbreaking aspect of her current work is that this particular counting model has not been used before in robotics.

"What I'm proud of with this paper is that the trends revealed are a little shocking to people - and it has taken a long time to get published because of that," LaViers said. "The reviewers at this venue were extremely helpful in making the paper stronger. In the end, the work is hopefully pointing to a way of thinking about artificial versus natural systems that can help us improve failure and robustness of machines in dynamic environments. That's the direction for future work."

University of Illinois College of Engineering

Related Robots Articles:

Robots popular with older adults
A new study by psychologists from the University of Jena (Germany) does not confirm that robot skepticism among elder people is often suspected in science.
Showing robots how to do your chores
By observing humans, robots learn to perform complex tasks, such as setting a table.
Designing better nursing care with robots
Robots are becoming an increasingly important part of human care, according to researchers based in Japan.
Darn you, R2! When can we blame robots?
A recent study finds that people are likely to blame robots for workplace accidents, but only if they believe the robots are autonomous.
Robots need a new philosophy to get a grip
Robots need to know the reason why they are doing a job if they are to effectively and safely work alongside people in the near future.
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Soft robots for all
Each year, soft robots gain new abilities. They can jump, squirm, and grip.
The robots that dementia caregivers want: robots for joy, robots for sorrow
A team of scientists spent six months co-designing robots with informal caregivers for people with dementia, such as family members.
Faster robots demoralize co-workers
A Cornell University-led team has found that when robots are beating humans in contests for cash prizes, people consider themselves less competent and expend slightly less effort -- and they tend to dislike the robots.
Increasing skepticism against robots
In Europe, people are more reserved regarding robots than they were five years ago.
More Robots News and Robots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at