Nav: Home

Discovery may lead to new materials for next-generation data storage

May 09, 2019

RESEARCH TRIANGLE PARK, N.C. (May 9, 2019) - Research funded in part by the U.S. Army identified properties in materials that could one day lead to applications such as more powerful data storage devices that continue to hold information even after a device has been powered off.

A team of researchers led by Cornell University and the University of California Berkeley made a discovery that opens up a plethora of materials systems and physical phenomena that can now be explored.

The scientists observed what's known as chirality for the first time in polar skyrmions in an exquisitely designed and synthesized artificial material with reversible electrical properties. Chirality is where two objects, like a pair of gloves, can be mirror images of each other but cannot be superimposed on one another. Polar skyrmions are textures made up of opposite electric charges known as dipoles.

Researchers had always assumed that skyrmions would only appear in magnetic materials, where special interactions between magnetic spins of charged electrons stabilize the twisting chiral patterns of skyrmions. When the team discovered skyrmions in an electric material, they were astounded, they said.

The combination of polar skyrmions and these electrical properties may allow for the development of novel devices that are of significant interest to the Army, especially using the chirality as a parameter that can be manipulated.

"Now that we know that polar/electric skyrmions are chiral, we want to see if we can electrically manipulate them," said Dr. Ramamoorthy Ramesh, the co-principal investigator of this project. "If I apply an electric field, can I turn each one like a turnstile? Can I move each one, one at a time, like a checker on a checkerboard? If we can somehow move them, write them, and erase them for data storage, then that would be an amazing new technology."

Researchers published their findings in the journal Nature.

"This ground-breaking discovery can be used in the future to develop device structures that can be used to improve logic/memory, sensing, communications, and other applications for the Army as well as industry," said Dr. Pani (Chakrapani) Varanasi, chief of the Materials Science Division of the Army Research Office, an element of U.S. Army Combat Capabilities Command's Army Research Laboratory.

When the team began the study in 2016, they had set out to find ways to control how heat moves through materials. They fabricated a special crystal structure called a superlattice from alternating layers of lead titanate (an electrically polar material, whereby one end is positively charged and the opposite end is negatively charged) and strontium titanate (an insulator, or a material that doesn't conduct electric current).

The research team started to explore the synthesis of artificially designed and structured oxides, with the goal to explore emergent phenomena. Emergent phenomena are pervasive in nature - fish swimming in a school, birds flying in formation, the emergence of crowd and mobs are all examples of how interactions of discrete objects (fish, birds, humans) can lead to unexpected collective behavior. Materials can also exhibit such emergent behavior, especially when placed under constraints.

When the scientists took scanning transmission electron microscopy measurements of the artificially engineered lead titanate/strontium titanate superlattice, they saw something strange that had nothing to do with heat: Bubble-like formations had cropped up all across the material. Lead titanate is a well-known ferroelectric material, while strontium titanate, its sister compound is not ferroelectric at room temperature. Ferroelectric are materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field.

Those bubbles, it turns out, were polar skyrmions.

While using sophisticated scanning transmission electron microscopy at Berkeley Lab's Molecular Foundry and at the Cornell Center for Materials Research, David Muller of Cornell University took atomic snapshots of skyrmions' chirality at room temperature in real time. The researchers discovered that the forces placed on the polar lead titanate layer by the nonpolar strontium titanate layer generated the polar skyrmion bubbles in the lead titanate.

"Materials are like people," Ramesh said. "When people get stressed, they respond in unpredictable ways. And that's what materials do too: In this case, by surrounding lead titanate by strontium titanate, lead titanate starts to go crazy - and one way that it goes crazy is to create polar textures like skyrmions instead of being uniformly polarized."

"This work has enabled the discovery of a fundamentally new phenomena in oxide superlattices," Schlom said. "We now have a template based on epitaxy to create many other science universes. For example, we can start to look at spin-charge coupling in such superlattices; work on this is already underway."

The researchers also plan to study the effects of applying an electric field on the polar skyrmions.
Researchers from Pennsylvania State University and Oak Ridge National Laboratory also contributed to the study.

Additionally, the Department of Energy Office of Science supported this research with additional funding provided by the Gordon and Betty Moore Foundation's EPiQS Initiative, the National Science Foundation, the Luxembourg National Research Fund, and the Spanish Ministry of Economy and Competitiveness.

The CCDC Army Research Laboratory (ARL) is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command's core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more lethal to win our Nation's wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

U.S. Army Research Laboratory

Related Data Storage Articles:

Discovery offers new avenue for next-generation data storage
The demands for data storage and processing have grown exponentially as the world becomes increasingly connected, emphasizing the need for new materials capable of more efficient data storage and data processing.
Magnetic whirls in future data storage devices
Magnetic (anti)skyrmions are microscopically small whirls that are found in special classes of magnetic materials.
Laser writing enables practical flat optics and data storage in glass
Femtosecond laser machining has emerged as an attractive technology enabling appications ranging from eye surgery to direct writing in the bulk of transparent materials.
Researchers report progress on molecular data storage system
A Brown University team has shown that they can store and retrieve more than 200 kilobytes of digital image files by encoding the data in mixtures of new custom libraries of small molecules.
Molecular eraser enables better data storage and computers for AI
Scientists have added a crucial tool to the atomic-scale manufacturing toolkit with major implications for today's data driven -- carbon-intensive -- world, according to new research from the University of Alberta in Canada.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Research overcomes key obstacles to scaling up DNA data storage
Researchers have developed new techniques for labeling and retrieving data files in DNA-based information storage systems, addressing two of the key obstacles to widespread adoption of DNA data storage technologies.
Discovery may lead to new materials for next-generation data storage
Research funded in part by the US Army identified properties in materials that could one day lead to applications such as more powerful data storage devices that continue to hold information even after a device has been powered off.
Electric skyrmions charge ahead for next-generation data storage
A team of researchers led by Berkeley Lab has observed chirality for the first time in polar skyrmions, in a material with reversible electrical properties -- a combination that could lead to more powerful data storage devices that continue to hold information, even after they've been turned off.
Advance boosts efficiency of flash storage in data centers
New architecture promises to cut in half the energy and physical space required to store and manage user data.
More Data Storage News and Data Storage Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at