Nav: Home

Why cancer drugs can't take the pressure

May 10, 2016

A major reason why cancer drugs fail is that they cannot penetrate the high-pressure environment of solid tumors. A study published May 10th in Biophysical Journal reveals that a large, naturally occurring molecule called hyaluronic acid is primarily responsible for generating elevated gel-fluid pressures in tumors. In a mouse model of pancreatic cancer, treatment with an enzyme that breaks down hyaluronic acid normalized fluid pressure in tumors and allowed vessels to re-expand, thereby overcoming a major barrier to drug delivery.

"We show that the gel-fluid phase generates a primary mechanism of drug resistance in pancreas cancer," says senior study author Sunil Hingorani of the Fred Hutchinson Cancer Research Center. "This also means that it may be worth revisiting some of the many agents that have previously failed in pancreas cancer patients and make sure they are first getting into the tumor. Similarly, elevated pressures due to a gel-fluid phase may be present in many other solid tumor types, so it may be worth seeing to what extent drug delivery can be improved in those settings as well."

Scientists first described elevated fluid pressure in tumors more than 60 years ago. Since then, a number of studies have measured fluid pressures in a variety of tumor models using classical methods such as the wick-in-needle technique. For wick-in-needle measurements, needles containing nylon threads are filled with a solution and connected to a pressure-measuring device. However, past studies using classical techniques in tumors measured only modestly elevated fluid pressures, which could not account for widespread vascular collapse--a major barrier to drug delivery.

These conventional methods are limited because they only measure freely flowing fluid, overlooking fluid that is trapped in immobile phases. For example, a large polysaccharide called hyaluronic acid is known to imbibe a large amount of water, forming a gel-like fluid in the joints and most organs of the body. Therefore, Hingorani and his team suspected that a large immobile-fluid phase generated by hyaluronic acid could be a principal driver of high pressures in many solid tumors.

To test this idea, the researchers used an instrument called a piezoelectric pressure catheter transducer to capture both free- and immobile-fluid pressures in tumors. The researchers inserted a probe containing a pressure sensor through a needle, into tumors in a mouse model of pancreatic cancer. For comparison, the researchers also performed measurements using the classical wick-in-needle technique.

Strikingly, the measurements of fluid pressure using the piezoelectric pressure catheter transducer were much higher than those captured by the wick-in-needle technique. Moreover, elevated fluid pressures measured by the pressure catheter transducer correlated with high levels of hyaluronic acid in a variety of tumor models. "Taken together, the findings show that the hyaluronic acid-dependent immobile fluid phase plays a previously underappreciated role in driving high pressures in solid tumors," Hingorani says.

The researchers next treated a mouse model of pancreatic cancer with a modified form of an enzyme called hyaluronidase, which breaks down hyaluronic acid. This treatment eliminated the immobile fluid phase and allowed vessels that had collapsed under pressure to re-expand. Because collapsed vessels pose a major impediment to drug delivery, the findings suggest that hyaluronidase treatment holds promise for improving patient outcomes for drug-resistant cancers.

Currently, a number of randomized clinical trials are examining the safety and effectiveness of hyaluronidase combination therapy in cancer patients. Preliminary results have shown that this treatment significantly improves response rates and progression-free survival in pancreatic cancer patients. In future studies, Hingorani and his team plan to further examine the mechanisms behind high immobile fluid pressures in solid tumors. "Given the importance of immobile fluid in cancer resistance, additional insights into the underlying mechanisms will could inform the development of treatment strategies that are most likely to succeed," Hingorani says.
-end-
This work was supported by the National Institutes of Health National Cancer Institute, the Lustgarten Foundation, and the GilesW. and Elise G. Mead Foundation. Several authors are or were employees, consultants, and/or shareholders of Halozyme Therapeutics.

Biophysical Journal, DuFort et al.: "Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase" http://www.cell.com/biophysj/fulltext/S0006-3495(16)30172-2The Biophysical Journal (@BiophysJ), published by Cell Press for the Biophysical Society, is a bimonthly journal that publishes original articles, letters, and reviews on the most important developments in modern biophysics-a broad and rapidly advancing field encompassing the study of biological structures and focusing on mechanisms at the molecular, cellular, and systems levels through the concepts and methods of physics, chemistry, mathematics, engineering, and computational science. Visit: http://www.cell.com/biophysj/home. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Pancreatic Cancer Articles:

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
Pancreatic cancer discovery reveals how the aggressive cancer fuels its growth
A new discovery about pancreatic cancer sheds light on how the cancer fuels its growth and may help explain how promising cancer drugs work -- and for whom they will fail.
Overcoming resistance in pancreatic cancer
In pancreatic cancer cells' struggle to survive, the cells choose alternative routes when their main pathways are blocked by drugs.
Exposing how pancreatic cancer does its dirty work
Pancreatic cancer is a puzzle -- tumors slough off cells into the bloodstream early in the disease, but the tumors themselves have almost no blood vessels in them.
Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.
Key to targeting the spread of pancreatic cancer
Targeting the tissue around pancreatic cancer cells may be the key to stopping their spread and improving chemotherapy outcomes.
Reprogramming pancreatic cancer
A type of white blood cell that has been especially susceptible to being deceived by pancreatic cancer cells into not attacking them can be 're-programmed' via a specially designed molecule that activates a protein found on their surfaces.
Pancreatic cancer collective comments on promising new pancreatic cancer
Lustgarten Foundation and SU2C offer comments on research describing a new combination drug therapy demonstrating promise for patients with pancreatic cancer.
Pancreatic cancer's addiction could be its end
Researchers at CSHL have discovered that an inappropriately produced protein may be why some pancreatic cancer patients die exceptionally early.
Turning cells against pancreatic cancer
Pancreatic cancer is infamously resistant to treatment options because the tumor is often surrounded by cells which are ''tricked'' into protecting it.
More Pancreatic Cancer News and Pancreatic Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.