Nav: Home

Berkeley Lab scientists brew jet fuel in 1-pot recipe

May 10, 2016

Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have engineered a strain of bacteria that enables a "one-pot" method for producing advanced biofuels from a slurry of pre-treated plant material.

The Escherichia coli (E. coli) is able to tolerate the liquid salt used to break apart plant biomass into sugary polymers. Because the salt solvent, known as ionic liquids, interferes with later stages in biofuels production, it needs to be removed before proceeding, a process that takes time and money. Developing ionic-liquid-tolerant bacteria eliminates the need to wash away the residual ionic liquid.

The achievement, described in a study to be published Tuesday, May 10, in the journal Green Chemistry, is a critical step in making biofuels a viable competitor to fossil fuels because it helps streamline the production process.

"Being able to put everything together at one point, walk away, come back, and then get your fuel, is a necessary step in moving forward with a biofuel economy," said study principal investigator Aindrila Mukhopadhyay, vice president of the Fuels Synthesis Division at the Joint BioEnergy Institute (JBEI), a DOE Bioenergy Research Center at Berkeley Lab. "The E. coli we've developed gets us closer to that goal. It is like a chassis that we build other things onto, like the chassis of a car. It can be used to integrate multiple recent technologies to convert a renewable carbon source like switchgrass to an advanced jet fuel."

Breaking down the biofuel production process

The basic steps of biofuel production start with deconstructing, or taking apart, the cellulose, hemicellulose and lignin that are bound together in the complex plant structure. Enzymes are then added to release the sugars from that gooey mixture of cellulose and hemicellulose, a step called saccharification. Bacteria can then take that sugar and churn out the desired biofuel. The multiple steps are all done in separate pots.

Researchers at JBEI pioneered the use of ionic liquids, salts that are liquid at room temperature, to tackle the deconstruction of plant material because of the efficiency with which the solvent works. But what makes ionic liquids great for deconstruction also makes it harmful for the downstream enzymes and bacteria used in biofuel production.

Previous studies have found ways to address these challenges. In 2012, JBEI researchers, including Blake Simmons, a co-author on this new study, had discovered a suite of saccharification enzymes that were tolerant to ionic liquids.

Marijke Frederix, this recent study's first author and a postdoctoral researcher in Mukhopadhyay's lab, established that an amino acid mutation in the gene rcdA, which helps regulate various genes, leads to an E. coli strain that is highly tolerant to ionic liquids, providing an important piece to the puzzle. They used this strain as the foundation to build on earlier work - including the ionic-liquid-tolerant enzymes - and take the steps further to the one-pot biofuel finishing line.

Putting the pieces together

They proceeded to test the E. coli strain using ionic-liquid pretreated switchgrass provided by the DOE's Advanced Biofuels and Bioproducts Process Demonstration Unit (ABPDU), a biofuels facility at Berkeley Lab launched in 2011 to accelerate the commercialization of biofuels.

"Armed with the rcdA variant, we were able to engineer a strain of E. coli that could not only tolerate ionic liquid, but that could also produce ionic-liquid-tolerant enzymes that chew up the cellulose, make sugars, eat it and make biofuels," said Frederix. "E. coli remains the workhorse microbial host in synthetic biology, and in our study, using the ionic-liquid-tolerant E. coli strain, we can combine many earlier discoveries to create an advanced biofuel in a single pot."

While ethanol may be one of the more common products to emerge from this process, researchers have looked to more advanced biofuels that can pack more energy punch. In this case, they used production pathways also developed at JBEI previously, and produced d-limonene, a precursor to jet fuel.

"Ultimately, we at JBEI hope to develop processes that are robust and simple where one can directly convert any renewable plant material to a final fuel in a single pot," said Mukhopadhyay. "This study puts us one step closer to this moonshot."
-end-
The research was supported by DOE's Office of Science. The ABPDU is funded by the Bio-Energy Technologies Office within DOE's Office of Energy Efficiency and Renewable Energy.

JBEI is one of three Bioenergy Research Centers established by the DOE's Office of Science in 2007. It is a scientific partnership led by Berkeley Lab and includes the Sandia National Laboratories, the University of California campuses of Berkeley and Davis, the Carnegie Institution for Science, and the Lawrence Livermore National Laboratory. DOE's Bioenergy Research Centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the Unites States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...