Nav: Home

Nuclear physics' interdisciplinary progress

May 10, 2016

The theoretical view of the structure of the atom nucleus is not carved in stone. Particularly, nuclear physics research could benefit from approaches found in other fields of physics. Reflections on these aspects were just released in a new type of rapid publications in the new Letters section of EPJ A, which provides a forum for the concise expression of more personal opinions on important scientific matters in the field. In a Letter to the EPJ A Editor, Pier Francesco Bortignon and Ricardo A. Broglia from the University of Milan, Italy, use, among others, the example of superconductivity to explain how nuclear physics can extend physical concepts originally developed in solid state physics.

Based on this example, they believe young nuclear physicists have the opportunity to bring their results to practitioners in other fields of research. Conversely, they also need to rise to the challenge of using new insights and techniques from other disciplines to question the validity of their own theories and make nuclear physics research more powerful.

The atomic nucleus is a self-bound system. Within it, elementary atomic nucleus particles or nucleons move with equal ease independent of each other or collectively. This dual movement makes it possible for the atomic nucleus to spontaneously deform into a cigar-like shape, for instance. And then it can start behaving like a miniature spinning top in what physicists call the spontaneous symmetry-breaking restoration phenomenon. Nuclear physics have previously shed light on such broken symmetry phenomena. Indeed, when deformation takes place in the abstract space related to the conservation of the number of nucleons, known as gauge space, broken symmetry is intimately connected with nuclear superfluidity, similar to superconductivity in metals.

Solid state physicists have previously described the microscopic theory of superconductivity - by relating superconductivity to the macroscopic occurrence of pairs of electrons bound into so-called Cooper pairs.

Nuclear physicists have extended the solid state physics results to the limit of a single Cooper pair and studied Cooper pair tunneling to individual quantum states - something which is not possible in solid state physics. This, the authors believe, should stimulate further nuclear physics interpretation of results from other physics disciplines.
Reference: P.F. Bortignon and R.A. Broglia (2016), Challenges in the description of the atomic nucleus: Unification and interdisciplinarity, European Physical Journal A 52: 64, DOI 10.1140/epja/i2016-16064-7


Related Superconductivity Articles:

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
More Superconductivity News and Superconductivity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...