Nav: Home

Brain cancer discovery reveals clues in quest for new therapies

May 10, 2017

Researchers have pinpointed two key molecules that drive the growth of an aggressive type of adult brain cancer.

The findings shed light on the mechanisms that underpin brain cancer progression and could eventually reveal targets for the development of much-needed therapies, researchers say.

Scientists conducted lab tests on tumour cells from patients with glioblastoma, a rare but aggressive type of brain cancer.

Previous studies have found that glioblastoma cells share similarities with normal brain stem cells, which give rise to the many different cell types in the brain during development.

The team identified two molecules that are produced at high levels by the cells - called FOXG1 and SOX2.

Similar levels of these molecules are found in brain stem cells and are a defining feature of these cells.

The researchers found that SOX2 drives glioblastoma cells to keep dividing, a hallmark of cancer.

FOXG1 stops the cells from responding to other signals that would usually point them towards becoming specialised, the team found.

Both FOXG1 and SOX2 work by controlling when key target genes are switched on and off by the cell.

The researchers analysed which genes were affected and identified several factors that are involved in controlling cell division.

The insights could open the door to new therapies that stop or slow tumour growth, the researchers say.

Glioblastoma is a fast-growing type of brain tumour. There are few options for treatment and only one in five patients will survive more than one year after diagnosis.

The study was led by scientists at the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh. The research is published in Genes and Development and was funded by Cancer Research UK and the Wellcome Trust.

Lead researcher Dr Steve Pollard, CRUK Senior Cancer Research Fellow at the University of Edinburgh, said: "Brain cancer cells seem to be hijacking important cell machinery that is used by normal brain stem cells. The tactic they appear to use is to produce high levels of these key regulators. This locks the tumour cells into perpetual cycles of growth and stops them listening to the signals that normally control cell specialisation."

Dr Áine McCarthy, Cancer Research UK's Senior Science Information Officer, said: "While survival for many types of cancer have improved dramatically, tackling brain tumours remains a challenge and we urgently need to develop new, kinder treatments.

"This research provides an exciting new insight into how two specific molecules might play a key role in driving the growth of glioblastoma tumours, the most common type of brain tumour. The next step will be for scientists to see if they can develop a way to stop glioblastoma cells from using these molecules as a way to survive and then to test it in clinical trials to see whether this affects tumour growth in people."
-end-


University of Edinburgh

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...